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Zentrum für Datenverarbeitung
Johannes Gutenberg University Mainz

Email: {afrankra, manuel.baumgartner, rsalkhor, brinkman}@uni-mainz.de

Checkpointing is a popular resilience method in HPC and
its efficiency highly depends on the choice of the checkpoint
interval. Standard analytical approaches optimize intervals for
big, long-running jobs that fail with high probability, while
they are unable to minimize checkpointing overheads for jobs
with a low or medium probability of failing. Nevertheless, our
analysis of batch traces of four HPC systems shows that these
jobs are extremely common.

We therefore propose an iterative checkpointing algorithm
to compute efficient intervals for jobs with a medium risk of
failure. The method also supports big and long-running jobs
by converging to the results of various traditional methods for
these. We validated our algorithm using batch system simula-
tions including traces from four HPC systems and compared it
to five alternative checkpoint methods. The evaluations show
up to 40% checkpoint savings for individual jobs when using
our method, while improving checkpointing costs of complete
HPC systems between 2.8% and 24.4% compared to the best
alternative approach.

Index Terms—checkpointing, HPC, resilience

I. INTRODUCTION

Parallel MPI applications typically fail as soon as a single
node of the underlying HPC system crashes. Checkpointing
reduces the impact of such node failures by regularly storing
the complete state of an application on persistent storage.
An application can therefore restart after a node failure and
continue at the point of the last checkpoint. However, check-
pointing requires considerable compute and storage resources
to save the state of an application. For this reason, optimizing
the checkpoint interval to reduce overheads has been an active
area of study in resilience [10], [19], [20], [28], [29], [32].

The most prominent theoretical method for finding optimal
checkpointing intervals was proposed by Young [32] and
later improved by Daly [9]. Their methods are derived from
a checkpoint cost function minimization for Poisson failure
distributions. Both approaches model their cost functions with
the assumption that failures nearly certainly happen within
the runtime of a job, which holds for very long running and
big jobs. Subsequent studies maintained this assumption [10],
[19], [20], [28], [29].

Our first observation in this paper reveals that many check-
pointable HPC jobs only have a medium probability of failure
(MPF). These MPF jobs can be estimated to have a failure
chance between 0.2 < pfail < 0.7. These are not hard thresh-
olds and depend highly on system parameters. MPF jobs can

benefit on average from checkpointing, while many individual
MPF jobs do not fail during their runtime. They therefore do
not fulfill the modeling assumptions of previous checkpointing
strategies, as either their runtimes are not long enough, they
do not use many nodes, or due to long times between node
failures. Not accounting for the properties of these MPF jobs
in previous studies resulted in over- or underestimations of
their optimal checkpointing intervals and therefore induced
unnecessary extra checkpointing costs. Jobs with a low failure
probability pfail < 0.2 are not explicitly optimized in this
paper, as it is typically not beneficial to checkpoint them. They
nevertheless occur within our traces.

The main contributions of our work are the development
of a new cost function for checkpointing MPF jobs and an
iterative algorithm that finds the statistically best checkpoint
intervals for MPF jobs based on the new cost function. The
input of the algorithm includes the number of nodes being
used by an application, the runtime of an application, and
the failure properties of the underlying HPC system. The
algorithm furthermore converges to the optimal results for jobs
with high failure probabilities. To the best of our knowledge,
no other method provides accurate estimates of checkpointing
intervals for MPF jobs.

Our method considers MPF jobs by taking into account
the actual number of checkpoints within the runtime of a
job and by modeling the average checkpoint count in case of
failures, using an exact finite sum of weighted probabilities.
Our approach furthermore models the average runtime with
failures using the first truncated moment of the respective
failure distribution. Finally it weighs the checkpointing costs
of both success and failure scenarios with the respective failure
and success probabilities for the entire job’s runtime.

Traditional approaches neglected these aforementioned as-
pects and considered failure probabilities to be extremely high.
They also assumed that the number of checkpoints is high and
that the average runtime can be statistically modeled using
non-truncated failure distributions. Neglecting these aspects
leads to inaccurate checkpoint intervals for MPF jobs with a
limited number of checkpoints.

We present implementations of our algorithm and exper-
iments based on real system traces of four HPC systems:
JGU MOGON II1, LANL Atlas2, LANL Mustang2 and CEA
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Curie3. System failures in these experiments are modeled using
Weibull and Poisson failure distributions. Nevertheless our
algorithm does not require an analytical formula of the applied
failure distributions and it suffices to provide an empirical
numerical formula of the failure properties.

The experimental results for the four HPC traces show that
we can obtain cumulative checkpoint cost savings (considering
all jobs and re-queuing) from 7.1% to 25.7% for Weibull fail-
ures and from 7.3% up to 27.5% for Poisson failures. The 7.1%
and 7.3% cost savings are compared to the best alternative
methods. MOGON II benefits most with average checkpoint
savings across all alternative methods of 18.1% followed by
LANL Mustang with 13.0%. LANL Atlas and Curie see 9.0%
and 10.5% savings, respectively. Finally we also show that our
method achieves savings between 6.0% and 26.6% compared
to alternative methods when only inaccurate values for the
mean time between failures (MTBF) are available.

The experimental results further show that our method
numerically agrees with Daly’s higher order cost approxima-
tion for jobs with a high probability of failure and failures
following a Poisson distribution.

In the remainder of this paper we discuss relevant re-
lated work in Section II, the motivation for our approach
in Section III, the problem formulation in Section IV, the
derived algorithm in Section V, the validating simulations in
Section VI and end with a conclusion in Section VII.

II. RELATED WORK

Checkpoint and restart has become the de-facto method to
protect computations from system failures. The main theoret-
ical framework to model overhead of checkpoint and restart
methods is based on Young [32] and Daly [9].

Young proposed a first order approximation of optimal
checkpoints and concluded that the optimal interval is fixed
and equals

√
2Mtc where M is the mean time between failures

and tc the checkpoint cost. Daly expanded Young’s work
taking into account restart costs, leading to the higher order
approximation of

√
2Mtc+tc in which the restart times ended

up not contributing to the interval determination.
Bouguerra et al. proposed a method for Weibull failure

distributions that searches for a checkpoint count that mini-
mizes the average completion time of jobs [7]. The authors
also showed that a periodic checkpointing strategy is optimal
when all nodes rejuvenate (state becomes failure-free after
a failure). This is a very restrictive requirement in practice,
since HPC system would need new nodes with no previous
history of failures that might affect future resilience. Our
work does not require component rejuvenation and instead
relies on using the available nodes within the HPC system
to run re-queued jobs after a failure without requiring unused
spare nodes. Our approach is also compatible with Weibull
distributions, but differs by searching through intervals to
minimize checkpointing costs.

Bougeret et al. proposed a multi-node heuristic (DP-
NextFailure) to determine checkpoint intervals by maximizing
the work done before a failure instead of minimizing waste
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[5]. Their method recursively calculates probabilities for all
computational sections between checkpoints, and yields an
interval for the job. It does not use the total runtime in the
probability calculations, making their approach inaccurate for
MPF jobs. The recursive algorithm also makes their method
computationally expensive with cubic complexity. Another
difference is that they use success probabilities for the compu-
tation sections, while our method uses the failure probability
of the total job runtime.

Jin et al. [20] expanded Young’s approximation to also
consider multiple nodes as well as spare nodes. They arrived
at a first order approximation that matches Young’s method
when the recovery cost is zero. As previously mentioned, our
method relies on existing nodes within a batch system.

Subasi et al. [28] proposed a general checkpointing method
with analytical formulations for arbitrary distributions, but
does not include the properties of MPF jobs. Our approach
also models arbitrary failure distributions, as long as density
functions and truncated moment formulas are available.

Bessho et al. [4] adapted checkpoint intervals to multi-node
systems. We accommodate this aspect into our simulations of
batch systems by scaling the MTBF accordingly and treating
the failures of distinct nodes as independent. This assumption
was explored and validated by Aupy et al. [3].

Herault et al. [17] discussed the limitations of Daly’s
method when taking I/O resource contention into account.
Their resulting approach yields a similar interval approxima-
tion to Daly but includes constrains for I/O utilization. Our
approach requires the I/O overhead to be modeled within the
cost of checkpointing.

Tiwari et al. [29] introduced a variable and fixed interval
method that takes into account an estimate for the average
fraction of lost work in their checkpoint formula. Our method
also accounts for the average lost work after a failure. Unlike
Tiwari, we do not use an estimate, but instead calculate
accurate statistical values using truncated moments.

El-Sayed et al. [10] concluded that the overhead and com-
plexity of variable checkpoint intervals was not justified in
practice for their LANL systems. We follow this assessment
and focus our efforts on fixed checkpoint intervals during
the uninterrupted runtime of an application. Nevertheless, the
checkpointing interval for a job can change based on the new
residual runtime left when restarting the job after a failure.
This is possible because our approach is a function of the
runtime of the job.

Jayasekara et al. [19] proposed a checkpoint interval for
batch stream processing systems that takes into account the
time needed to detect a failure. Their method differs from
others in their modeling of the optimal interval using a
Lambert function and by not assuming a single node failure
to be fatal for the complete job. In contrast, most HPC
checkpointing approaches including ours consider the first
encountered failure to be fatal.

Gupta et al. [15] showed that failures which are correlated
based on physical proximity need to be modeled differ-
ently. We can support such locality of failures, if they are
modeled within the failure distribution. We also require the
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Figure 1: Runtime distribution of user jobs within our HPC system
(blue). The red curve indicates the CDF of runtimes and the dotted
curves the failure probability distributions for various node counts.

failure model to consider the whole system and not just sub-
components. The failure distributions are therefore preferably
derived from real logs.

We follow the approach of previous works [17], [20], [3]
by scaling the MTBF of a system by the amount of nodes
used by a job. Under this modeling a job using half a system
experiences an MTBF twice as long.

The cost of checkpointing defined by our model is directly
influenced by the duration of every checkpoint tc performed.
This cost is significant in file-systems that cannot handle
the large volumes of data written during the creation of
checkpoints. The overhead of checkpoints can be mitigated by
using highly parallel on-demand file-systems [8], distributed
file systems that offer high bandwidth, caching and QoS [30],
[25], [31] high performance persistent client caching that can
cope with the overhead [24], [26] and techniques that reduce
the size of checkpoints [14] [21]. In this work we perform
simulations using multiple checkpoint costs to showcase how
our method offers consistent gains.

Finally our model does not need to account for multiple fail-
ures fatally interrupting the application during its runtime. This
follows from focusing on parallel MPI applications, where
applications fail catastrophically upon encountering the first
failure. Furthermore, there is no need to consider any sequence
of non-fatal failures that do not invalidate computations.

In the next section we expand on how HPC system work-
loads and failure characteristics motivate our approach.

III. MOTIVATION

Our main motivation to address MPF jobs is based on the
failure characteristics and job statistics of the Mogon II HPC
system with more than 2,000 nodes as well as two LANL
Systems, Trinity and Mustang [1]. For Mogon II, we have
access to batch logs for a period of two years consisting of
four million jobs [12]. We found out that ∼1.59% of the jobs
crashed from either a hardware or system software failure
(non-user related), creating a scaled MTBF of 11.15 hours
for 1024 nodes.

Looking at the runtimes and node counts we can determine
the probability of a job failure in conjunction with the MTBF
of the system. Figure 1 shows the normalized runtime distribu-
tion of jobs in our system, the related cumulative distribution

nodes
Figure 2: Node distribution of user jobs within our HPC system
(blue). The corresponding red curve indicates the CDF and the dotted
curves the failure probability distributions.

function (CDF), and four Weibull failure probability curves
for jobs with node counts up to 1,024.

At first glance, we note that most jobs are shorter (3.91h)
than the full system MTBF of 5.71h, and when we consider the
scaled MTBF of more common node sizes used by the jobs,
the MTBF increases to 428.25 hours for 16 nodes. Dotted
curves in Figure 1 indicate the respective failure probabilities
for 16, 64, 256, 512 and 1024 nodes The key aspect is that
both the MTBF and the probability of failure decrease as the
number of nodes used by a single job decreases. A job with
512 nodes, e.g., needs 8 hours of runtime to achieve a failure
probability of 50%.

Figure 2 shows the node size distribution of the same job set
as in Figure 1. Similarly to the runtime distribution, the node
counts are commonly small and mostly in powers of two. The
CDF shows at least 50% of the node counts being smaller than
26 nodes, 75% smaller than 54 nodes and 90% smaller than
104 nodes. It already takes 74 nodes running for 50 hours to
achieve a coin toss failure probability of 50%. For jobs only
running for 1 hour, it takes at least 3,826 nodes to surpass a
probability of failure of 50%.

Browne et al. [22] have found similar node and runtime
distributions within the Lonestar4 and Ranger systems. The
jobs from those systems are also skewed to lower runtimes
and node sizes. Amvrosiadis et al. [1] surveyed the LANL
Trinity and LANL Mustang traces that we have used in our
simulations. They showed that 80% of the jobs lasted less
than 3 hours for Mustang and 6 hours for Trinity. This is
evidently shorter than the runtime needed to assure failures.
The LANL traces show that MPF jobs are very common and
are responsible for 90% of the jobs using 128 nodes or less.

Checkpointing these MPF jobs wastes resources if the
checkpointing interval is calculated based on the traditional
assumption that jobs have high failure probabilities. Our
method enables users of MPF jobs to reduce the number of
required core hours when considering failures and failure free-
runs.

IV. PROBLEM FORMULATION

Our goal is to derive a checkpoint interval length τ for
each HPC job that balances the additional runtime of the
job due to the creation of the checkpoints and the waste of
computation between the last checkpoint and a possible failure.
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Figure 3: Checkpointing diagram showing the cyclical processes of
periodic checkpoints between computation phases. In the event of
a failure the application is re-queued and restarted by loading the
checkpoint.

Let tc denote the time needed to create a single checkpoint
(see Figure 3). For an estimated base runtime tb of the job,
e.g. given by the user, the total runtime of the job extends to
t = tb + ntc if n checkpoints are made and no error occurs.

In order to be able to optimize the checkpoint interval τ at
all, the following Assumption 1 is made:

Assumption 1. The base runtime of applications without
checkpoint overheads can be accurately estimated by either
users or other predictive systems.

Given that most users provide an upper bound of their job’s
runtime on submission, this assumption may be considered a
comparatively weak requirement.

We use a random variable F to model the occurrence of
failures within the HPC systems. For a given job, a realization
of F creates a time 0 ≤ tf at which a failure occurs. If tf < t,
the failure occurs within the runtime of the job and the job
fails, otherwise the job succeeds.

The expected average cost Ŝ of checkpointing excluding
useful computation time is given by Equation 1. Our goal
is to model the actual average cost Ŝ of performing periodic
checkpoints through a simulation of F events for a job runtime
t and interval τ . Any runtime not used for computations is
considered as wasted, and hence is a cost. This is shown in
Equation 1, where the first term (1a) accounts for the cost of
checkpointing tc multiplied by the actual amount of performed
checkpoints bmin(t, tf )/(τ + tc)c in each simulated event.
This cost is always paid by a checkpointed job, regardless of
a failure occurring.

Ŝ =
1

F

F∑
f=1

tcbmin(t, tf )/(τ + tc)c (1a)

+ tf mod (τ + tc) if tf < t. (1b)

Additionally, term (1b) adds the wasted time after the last
successful checkpoint (tf mod (τ+tc)) in case a failure occurs
at time tf < t. In Section VI we will show how Equation 1 is
approximated by the traditional methods when the event tf < t
occurs with high probability. Furthermore we will show how
our method deals with the case of tf > t for MPF jobs. In

contrast to previous models, our cost is discontinuous since
we included floor functions to model the actual number of
checkpoints at lower probabilities. In Section VI-A we will
show how the effects of the floor function are smoothed out
at failure probabilities close to one.

Our approach to model Ŝ works with arbitrary failure
distributions F, as long as approximations of the truncated
moments (cf. Eq. (12)) are available and the relevant failure
assumptions described in this section hold. Nevertheless we
focus on the two most common distributions: Weibull for its
flexibility [27] and Poisson for its use in previous work [32],
[9].

HPC jobs are traditionally run using a batch system that
queues jobs in HPC systems and waits for resources to be
available before executing. If a job fails but a valid checkpoint
is available it can be re-queued and can become a new job with
a new base runtime t′b. The re-queued job receives available
nodes from within the already existing HPC system. Re-
queuing and re-starting requires waiting until the re-queued
job starts. Re-queued jobs are then checkpointed and are
susceptible to failures. As we focus on the checkpointing
costs during the runtime of a job, we neglect the waiting
time of the job, since waiting consumes no system resources.
Moreover, the initial waiting time of the first job-submission
is traditionally also not taken into account. For the additional
time needed to restart from the last checkpoint, we make the
following Assumption 2:

Assumption 2. The restart time for a failed and re-queued
job is known and is part of the new base runtime t′b.

A re-queued job is considered as a new job in itself and
a new checkpoint interval τ ′ may be computed for the new
base runtime t′b. Previous works show no contribution from
the restart time [9], [17], [29], [20], [19].

Assumption 3 accounts for spatial locality and multiple
failures affecting the same runtime of an application by con-
sidering failures to be catastrophic and applying subsequent
related failures to re-queued jobs.

Assumption 3. An application fails catastrophically on all
its nodes upon encountering the first node failure. Only
failures that stop or invalidate computations are meaningful
for checkpointing. Multiple correlated failures can affect newly
re-queued jobs and should be modeled within the failure
distributions of the whole system.

Assumption 3 requires that the failures of a system are
modeled as a whole for the HPC system instead of modeling
failures per node (component rejuvenation).

Additionally any changes in parameters like MTBF or cost
of checkpointing can be used to update the model and compute
new interval values.

In the following section, we derive a mathematical model
of our problem formulation and show in Section VI that our
approach offers lower expected checkpointing costs for MPF
jobs compared to Daly’s or other methods.



V. ALGORITHM DERIVATION

An analytical determination of the optimal checkpoint in-
terval length is challenging due to the floor functions in
Equation 1 and not the focus of our study. Moreover, a
fixed analytical formulation of the failure distribution would
interfere with our goal of providing a method that is able to
work with any failure distribution.

Instead we will provide an iterative algorithm that evaluates
values of τ to find a minimal cost tailored to the expected run-
time of the application and its probability of failure. Although
this approach does not necessarily find the optimal value of τ
in a mathematical sense, it provides a very fast and efficient
method that can be implemented in production.

We summarize the combined job and system settings needed
to model checkpointing as the vector

s = (tc, τ,M, t, tf ),

where tc is the time required for a single checkpoint, τ the
computing time between two checkpoints, M the MTBF of
the system, t the runtime of an application and tf is the time
of a failure.

A. Cost function
Traditional methods for the determination of checkpoint

intervals are based on the assumption that a failure nearly
definitely happens during the job’s runtime. Our approach
removes this limitation by weighting the costs of failure and
success events with their respective probabilities. Considering
a single job with total runtime t and a failure occurring at tf ,
we consider the cost function

C(tf , t) :=

®
Cok if tf > t

Cfail if 0 ≤ tf ≤ t
(2)

evaluating the costs if a failure occurs at time tf . The
individual costs are defined as

Cok :=

õ
t

τ + tc

û
tc, (3a)

Cfail := tf −
õ

tf
τ + tc

û
τ. (3b)

The cost function in (2) accounts for the additional runtime of
the job in case the job terminates successfully, or the wasted
time in case of a failure. The function Cok accumulates the
additional time spent in creating the checkpoints. Note that
this function is independent of tf and is our extension to
Young and Daly. The function Cfail represents the traditional
checkpointing cost, i.e. the difference of the time tf at which
the failure occurs and the successfully completed full compu-
tation intervals tu = τ + tc until tf . In the failure scenario
the computation progress is accounted for by the computation
chunk τ . The rest is wasted work that constitutes cost. In either
cases, the total time t = tb + ntc depends on the value of the
time interval τ between two checkpoints.

Both cases include a floor function rendering this approach
different from previous works. The floor function transforms
the number of checkpoints into a whole number (e.g. 3.34 7→

3) to account for only the cost of checkpoints that are actually
performed, making the method more accurate. Any residual
is considered part of the wasted computation from failures
and is accounted for later in Equation 6c. Floor functions are
necessary to model the actual cost for MPF jobs in that it
exactly computes the number of completed checkpoints. The
floor function produces a non-continuous cost function for
MPF jobs but retains relative smoothness for traditional jobs
where the probability of failure approaches 1.

In summary, the cost function C comprises the additional
runtime of a successful job caused by the checkpoint-restart
technique and the wasted computation time for a failing job.
Restart and resume costs are conceptually modeled within job
re-queueing after catastrophic failures.

Substituting the random variable F, modeling the occurrence
of a failure (see examples in Section V-C), into the cost
function (2) yields the new random variable C(F, t) and its
expected value

EC := E[C(F, t)] (4)

corresponds to the expected cost of a job that performs check-
points. Note, since the cost function in Equation (2) depends
on the time interval τ between two consecutive checkpoints,
the expected cost in Equation (4) is a function of τ . The
(mathematical) optimal value of τ is the minimum of the
expected cost (4). This approach was taken by Young/Daly and
Bougeret utilizing their own smooth cost functions. However,
our cost function that accounts for MPF jobs is not smooth due
to the floor functions, thus we do not analytically compute the
optimal value. The use of floor functions also makes our cost
more realistic, since only completed checkpoints are actually
considered.

By definition, the expected cost EC (4) may be written as

EC =

t∫
0

Cfail(x, t)p(x) dx+

∞∫
t

Cok(x, t)p(x) dx (5a)

=

t∫
0

Cfail(x, t)p(x) dx+

õ
t

τ + tc

û
tc(1− P (t)) (5b)

where the CDF P (t) =
t∫

0

p(x) dx is the probability of a failure

occurring before t. The fail part in (5) is evaluated as

t∫
0

Cfail(x, t)p(x) dx (6a)

=

t∫
0

xp(x) dx− τ
t∫

0

õ
x

τ + tc

û
p(x) dx (6b)

= µt − τ n̂f (6c)

where µt =
t∫

0

xp(x) dx is the first right truncated moment,

also known as the partial average of the distribution from F



[23]. Using the truncated moment allows us to model average
runtimes before a failure for MPF jobs. This approach is new
among checkpoint determination techniques. In the second
integral in Equation (6b), τ can be taken out, while the integral
itself evaluates to the mean amount of checkpoints in case
of failures n̂f . Equation (6) may be interpreted as the mean
time up to failure, minus the mean time spent doing actual
computations. Effectively, this is the expected time spent doing
checkpoints and wasted computations that need to be redone
upon a failure. Unlike Bougeret where computing sections are
weighted, we weight the costs with the respective probabilities
of the entire jobs runtime. This allows for modeling of MPF
jobs.

The expected number of checkpoints before a failure at tf
in (6c) can be numerically calculated using the formula

n̂f =

t/tu∑
i=0

i · [ P ((i+ 1)tu)− P (itu) ] , (7)

resulting from splitting up the second integral from Equation
(6b) to intervals where the integrand is smooth. Within the
sum, each checkpoint count i is weighted by the probability
of a failure occurring in the particular interval. This represents
an average number of checkpoints upon encountering the first
failure of MPF jobs and is to our knowledge also the first
formulation of it.

The expected costs EC can therefore be summarized in
Equation (8) as the sum of the partial costs for failures (8a)
and successes (8b):

EC = µt − τ
t/tu∑
i=0

i · [ P ((i+ 1)tu)− P (itu) ] (8a)

+

õ
t

τ + tc

û
tc(1− P (t)) (8b)

This final equation is used within Algorithm 1 to find the
the value of tu that minimizes it.

B. Iterative Algorithm

Algorithm 1: Compute tu for which EC is minimal.
Data: system s with input tb.
Result: tu with minimum expected cost.
U = [ 1

60 ,
2
60 ,

3
60 . . . , t− tc] ; tu ∈ U in hours

cmin = maxflag ;
umin = undefined ;
foreach tu in U do

c = EC(tb, tu); Eq. 8
if c < cmin then

cmin = c;
umin = tu;

return umin

Algorithm 1 searches for an approximated optimal check-
pointing interval τ . It iterates over the set U of tu choices for
tu = τ + tc with a resolution of one minute. The algorithm

then computes the associated expected cost using Equation 8
and finally keeps track of the minimum cost to select the value
of tu which keeps the waste at a minimum.

C. Poisson and Weibull examples

Common choices for the distribution of the random variable
F are the Poisson and the Weibull distribution [9], [15],
[16], [27]. Here we provide examples for both models but
emphasize that Equation 8 is derived independently of them,
making the algorithms of Section V-B general. Algorithms
must be aware of all properties from F, which for Weibull
includes the scaling factor w. The probability density function
of the example random variable F is

p(x) =
w

λw

( x

λw

)w−1

e−( x
λw

)w for x ≥ 0 (9)

with the parameter

λw =
M

Γ(1 + 1
w )

(10)

where w = 1 gives the Poisson distribution and w 6= 1 the
Weibull distribution. For these distributions, the first truncated
moment µt (the incomplete mean) is given by, e.g. [18],

µt =

∫ t

0

xp(x) dx (11)

=


Mγ

(
1
w + 1,

(
tΓ( 1

w+1)

M

)w)
if Weibull

M
(
1−

(
t
M + 1

))
exp
(
− t

M

)
if Poisson

(12)

where Γ(·) is the one parameter gamma function, γ(·, ·) is the
two parameter gamma function and w the Weibull factor that
models Weibull failure distributions [23]. Our introduction of
truncated moments for checkpoint determination allows us to
determine modeling parameters numerically.

Additionally the failure probability until time t is

P (t) =

1− exp

Å
−
Å

tΓ(1+ 1
w )

M

ãwã
if Weibull

1− exp
(
− t

M

)
if Poisson

(13)

D. Usability

Real world HPC scenarios show that MPF jobs are sig-
nificant and hint that previous approaches can miscalculate
their intervals leading to higher expected costs and wasted
core hours. Using Equation 8 and Algorithm 1, system ad-
ministrators may implement a small calculator for their users
that can provide them at job start with the best checkpoint-
ing interval for reducing average waste. Users need to only
provide the job characteristics through already existing batch
system submission scripts. The calculator can then compute
an interval for the remaining runtime and the user may tune
their checkpointing method for that interval. The result is less
expected costs from using interval based checkpoints.



VI. SIMULATION AND RESULTS

This section explores the simulation of jobs within HPC
systems to compare our MPF aware algorithm to Daly’s (2006)
second order estimate [9], Bouguerra’s (2009) Weibull ap-
proach [7], Subasi’s (2017) general method [28], Jayasekara’s
(2019) method considering failure detection costs [19] and
Tiwari’s (2014) waste-aware (OCI) approach [29].

We also perform an initial comparison to Bougeret’s (2011)
heuristic DPNextFailure (DPNF) [5]. Unfortunately computing
intervals with DPNF for the simulated jobs is computationally
extremely expensive due to its O(t3) complexity. Since the
DPNF method seems not to provide significant improvements
in MPF scenarios compared to the other five methods, we
just performed initial comparisons to corroborate Bougeret’s
findings that DPNF is suited for high node counts equivalent
to our high probabilities of failure.

In the following simulations we model the failure char-
acteristics with a synthetic Weibull failure distribution and
a weight factor of 0.8. Weibull is a good fit for the LANL
ATLAS system as shown by Yuan et al. [33]. We also provide
summarized simulations with Poison failures for completion.

The MTBF is then scaled to the node count of each job
through

MTBFjob = MTBFmachine ·
Nmachine

Njob
(14)

where Nmachine and Njob denote the node number of the
whole machine and the job, respectively. This scaling is
consistent with modeling in previous works [15], [17].

To ensure robust statistic, we simulated F = 10, 000 failure
events. The average number of successes and failed attempts
coincide with the failure probability of the job. We refer
to our checkpoint intervals as the “aware intervals”, since
their computation explicitly accounts for the reduced failure
probability of jobs. In order to compare the methods, we
compare against the average checkpoint cost produced by the
simulation (Ŝ) from Equation 1. This cost includes the cost of
checkpointing and the cost of computations lost from failures,
but we refeer to it only as checkpointing cost.

We implemented a single-threaded version of Algorithm 1
with Python 2.7 using the NumPy 1.16 and SciPy 1.2 libraries
and an Intel Xeon E5-2650 CPU @ 2.00GHz. Using this setup,
an implementation of Equation 8 evaluates 25,000 waste costs
per second and Algorithm 1 computes at least 400 aware
intervals per second. This algorithm offers rates way above
the requirement of a typical HPC batch system, while the
algorithm can be trivially parallelized.

A. Interval and cost function simulation
We start by comparing all algorithms (using Equation 8)

against the simulated average checkpointing costs of Equa-
tion 1 using F failure events at time tf .

Figure 4 shows the simulated and the estimated costs of four
distinct application runtimes t as a function of the checkpoint
interval τ . We mark the location of each interval, the full final
costs for the simulation (blue) and our model EC (red). All
panels shown are examples of jobs running on a system with
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Figure 4: Simulated and aware-algorithm costs of checkpointing for
a range of intervals. The panels show the costs for jobs with 0.33%,
60%, 65% and 99% probability of failing. Our aware algorithm is
shown in a black circle.

a MTBF of 24 hours and checkpoint cost of half an hour. The
jobs have a runtime of 6.59h, 18.99h, 22.51h and 142.90h as
well as failure probabilities 0.33%, 60%, 65% and 99%.

The first noteworthy feature is the accuracy of the model
in relation to the stochastically simulated events. Numerically,
the standard error of costs for our model is consistently below
10−2 or 1.6 minutes. Qualitatively, the total cost follows
closely the simulated curves across the entire range of check-
pointing intervals.

The next interesting property is the stepped shape of the
cost function that is more pronounced for jobs with low
and medium failure probabilities as seen by comparing the
left panels to the right ones. These sharp steps arise from
the floor function within our cost function. The steps cause
inefficient cost estimation for the alternative methods that do
not weight the checkpoint costs by the full checkpoint count.
This assumption is acceptable for large failure probabilities
where the steps smooth out making the traditional methods
consistent with their own modeling algorithms. However, this
traditional assumption fails to model the costs of MPF jobs,
while our method is able to find the interval with the lowest
value in this stepped curve.

As seen in Figure 4, it is by coincidence that alternative
methods report an interval with a low cost at the bottom of
a step depending on the parameters t, tc,M . In the top left
example Jayasekara and Daly were close to our aware interval,
with the first having a lower cost than the former. Although
DPNF and Tiwari were further off than Daly, they obtained
lower costs by sitting in lower parts of the steps. This shows
how other methods might have increased checkpoint costs with
comparable intervals to our aware method. We can report that
this inexact behavior at lower probabilities is present regardless
of the distribution or failure parameters. The bottom left panel
shows how our method can recommend not checkpointing at
all when other methods would recommend at least one check-
point. As the probability of failure increases, the difference to
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Figure 5: Relative cost between alternative methods and our aware
checkpointing approach for applications with runtimes corresponding
to failure probabilities of 0 < P < 1.

the Daly cost as given by its interval diminishes. This is seen
on the bottom right panel and top right panel.

Qualitatively the overall shape of the curve is smooth and
concave in the limit P → 1, thus a minimum can be ana-
lytically derived in the classical scenario. The cost difference
from our method to the alternatives only consistently shrinks
as P → 1. This is shown in the right panel where the simulated
and modeled cost curves become smoother. In this scenario our
method converges to Daly’s method because we achieve the
traditional assumption that jobs will definitely fail. The cost of
Jayasekara also approaches Daly’s estimate for P → 1. The
other methods might offer diverging intervals in this scenario,
but the cost differences are much smaller as a result of the
smooth curve. At this probability the cost among methods
becomes smaller and the choice of method can be left to usage
requirements that match the specialization of the alternative
methods.

B. Checkpoint cost overhead
Figure 5 shows the relative extra cost of the alternative

methods compared to our aware approach. The costs are shown
for a range of application runtimes as a function of their failure
probability 0 < P (t) < 1. Each point in the curve shows
the relative costs when using the computed interval of the
compared methods.

The step-wise cost change is clear by the diverging costs
between the methods that occur regularly. The ratio of all
but one method (Bouguerra) approaches one for P → 1.
Bouguerra diverges from the rest with up to 19% extra
checkpoint cost. The ratio for all methods is larger for MPF
jobs and becomes smaller as jobs become more likely to fail.
From the ratio of costs depicted in the right panels we see how
Bouguerra and DPNF have the highest cost overhead at very
low probabilities and that the Daly interval can produce 80%
more overhead than our aware method. In the left two panels
we see that the stepped cost overhead of the Subasi, Jayasekara
and Tiwari methods start at 60% and lowers rapidly to 20%

ending at minimal overhead for high P → 1. In the lower left
panel Subasi has slightly higher costs than the rest (except
Bouguerra) at high probabilities close to one. Depending on
the runtime and failure characteristics, the alternative methods
offer similar costs to our approach for P → 1, but incur sig-
nificant overheads at medium probabilities. This is consistent
with the modeled equations and examples of Figure 4. In our
experience, MPF jobs with 0.2 < pfail < 0.7 benefit most
from our method depending on the parameters.

C. HPC system traces
In this section, we move from synthetic benchmarks to

queues of jobs sampled from four different systems: Mogon II
(2,000 nodes) [13], LANL Trinity (9,408 nodes) and LANL
Mustang (1,600 nodes) [2] and TGCC Curie (5,544 nodes)
[11]. The Mogon II system has the most MPF jobs and Curie
the least.

We simulate the runtime of all the checkpointable jobs from
these traces while performing checkpoints using the intervals
provided by each interval method. We present results for MPF
and non-MPF jobs within the traces (where tc+τ < t), explore
the MTBF-values M ∈ {24, 36} hours and the checkpoint
times tc ∈ {6, 15, 30} minutes.

We report the absolute checkpoint costs in hours and relative
savings to the alternative methods. In addition we test four
different failure versions with the w = 0.8 Weibull failures, a
Poisson failure distribution and two system where the MTBF
is uncertain and off by -20% and +20% (Weibull). This
leads to a total of 480 different simulations (4 systems ×
5 methods × 6 parameters × 4 versions). Each of the 480
simulations performs 10,000 failures for each job, where the
average checkpoint cost per job is summed. The final sums
are then used to calculate the checkpointing cost savings.
Each simulation compares an alternative method to our aware
approach and is unique with distinct random failure events
for each job. This effectively compares our aware approach
to each alternative method individually. The aware method
is executed again within each unique simulated event. This
explores as many distinct random sample events from the same
failure distribution as possible, but makes it hard to compare
between alternative methods.

1) Weibull: Table I-a lists the summarized total checkpoint
savings of Weibull failures considering all jobs, including
MPF and non-MPF jobs. The summarized row shows average
total savings across all systems of at least 7.1% compared to
Jayasekara and Daly. We consider these two methods the best
performing alternatives. The checkpoint cost savings compared
to Tiwari, Subasi and Bouguerra are 18.2%, 25.7% and 16.2%
on average across all systems.

Looking at specific systems, our approach saves between
11.3% and 19.6% compared to Tiwari for the Mogon II
traces and between 4.1% and 5.0% for the Curie system.
Our aware approach offers the most savings compared to the
Subasi method, with 56.8% cost savings for configurations
with 0.10h checkpoint costs. This is because Subasi performs
worse for low checkpoint costs on MPF jobs. The savings
against Jayasekara and Daly are between 9.1% and 24.4% for



Weibull w = 0.8 Total checkpoint cost savings of all jobs (MPF and not)

System ↓ Parameters of Alg. 1 compared to method... e)
MTBF tc Tiwari [29] Subasi [28] Jayasekara [19] Daly [9] Bouguerra [6] ← Avg.

MUSTANG

36h
0.50h 7.1% 6.2% 5.6% 5.6% 16.6%

13.0%

0.25h 7.3% 25.0% 5.5% 5.4% 19.0%
0.10h 7.0% 57.6% 5.3% 5.2% 22.0%

24h
0.50h 6.2% 5.5% 5.3% 5.3% 15.5%
0.25h 6.4% 23.2% 4.5% 4.7% 17.8%
0.10h 6.8% 56.8% 5.1% 5.0% 21.0%

ATLAS

36h
0.50h 8.0% 6.6% 6.2% 6.5% 6.5%

9.0%

0.25h 7.2% 15.6% 5.5% 7.0% 8.4%
0.10h 5.8% 44.7% 5.7% 6.0% 13.1%

24h
0.50h 6.2% 7.3% 7.5% 8.0% 2.4%
0.25h 6.6% 15.4% 5.8% 5.3% 8.5%
0.10h 6.1% 42.9% 4.6% 4.1% 14.5%

MOGON II

36h
0.50h 11.3% 10.5% 9.4% 10.4% 18.4%

18.1%

0.25h 11.9% 30.3% 9.1% 9.5% 19.8%
0.10h 17.0% 39.3% 13.0% 13.0% 26.7%

24h
0.50h 11.6% 10.8% 10.0% 10.1% 16.0%
0.25h 16.8% 24.2% 24.4% 22.4% 20.1%
0.10h 19.6% 39.9% 18.8% 18.5% 30.7%

CURIE

36h
0.50h 5.0% 5.1% 4.0% 4.0% 13.4%

10.5%

0.25h 4.7% 18.9% 3.6% 3.4% 16.1%
0.10h 4.8% 55.3% 3.3% 3.1% 18.7%

24h
0.50h 4.3% 4.7% 3.4% 3.4% 12.5%
0.25h 4.1% 17.0% 3.0% 2.8% 14.7%
0.10h 4.2% 54.5% 2.8% 2.6% 16.9%

a) ↑ This Weibull 8.2% 25.7% 7.1% 7.1% 16.2%

b) With Poisson 27.5% 25.1% 7.3% 7.7% 10.9%

c) Same Weibull -20% MTBF 11.1% 24.9% 6.0% 6.0% 15.9%

d) Same Weibull +20% MTBF 12.5% 26.6% 7.5% 7.5% 16.3%

Table I: Savings when using our approach for four HPC systems with a combination of two MTBF values 24h, 36h and two checkpoint
costs 0.25h, 0.5h. The simulations of a), c) and d) are done using Weibull failures with w = 0.8. Poisson failures are used for b).

the Mogon II system and around 3% to 5% for Mustang, Atlas
and Curie.

Against the Bouguerra method our approach saves between
12.5% and 30.7% for the Mustang, Mogon II and Curie
traces. The big savings on Mogon II against Bouguerra can be
attributed to MPF jobs. The savings on Curie are because of
the degrading performance of Bouguerra on big probabilities
of failure as seen in Figure 5. Bouguerra performs best on
the Atlas system with savings of 2.4% for the 24h MTBF and
0.50h checkpoint cost. For the Curie system our method shows
consistent savings less than 5% for the Tiwari, Jayasekara and
Daly methods and between 13.4% and 18.7% compared to the
Bouguerra method.

In Table I-e we can see average savings of 13.0% across all
methods for the Mustang traces. The Mogon II system sees
the most savings across all methods with 18.1%. Finally the
Atlas and Curie traces see 9.0% and 10.5% savings.

For completion we show the absolute values used for the
relative savings on Table II. The cost from each alternative
method is shown (right) against the respective cost of our
aware method (left). The absolute costs of the methods are
only comparable to the respective aware cost due to the
uniqueness of each simulation as described in Section VI-C.

This was done to avoid re-running costly simulations as new
alternative methods were tested and to explore as many distinct
sample events from the same failure distribution as possible.
The drawback of this approach is that it becomes difficult to
compare alternative methods with each other.

2) Poisson: In Table I-b we see that the average cross
system savings for Poisson failures increase to 27.5% against
Tiwari and remain similar for Jayasekara and Daly at 7.3% and
7.7% respectively. The savings against Subasi and Bouguerra
decrease from 14.1% to 12.5% and 10% respectively. The
savings remain at an average of over 7% against all methods.

3) MTBF Uncertainty: Next we address the savings that
our method can provide against the alternatives in case of
a not accurately known MTBF. This represents a common
scenario since new systems have not yet collected enough data
to determine their own MTBF and would therefore have to
extrapolate MTBF guesses from external data. We address this
uncertainty by computing the optimal checkpointing intervals
with an uncertain value for the MTBF, perturbed by factors
−20% and +20%, while still simulating the costs using the
”real” MTBF values of 24 and 36 hours for Weibull failures.
Both the aware and alternative methods use the uncertain
MTBF to determine checkpoint intervals.



Weibull w = 0.8 Total overhead time in hours (aware & alternative) from the checkpoint cost

System ↓ Parameters of all jobs (MPF and not) in each simulation
MTBF tc Tiwari [29] Subasi [28] Jayasekara [19] Daly [9] Bouguerra [6]

MUSTANG

36h
0.50h 52820 / 56840 52967 / 56455 53474 / 56635 53759 / 56936 52603 / 63090
0.25h 42622 / 45956 42579 / 56801 42880 / 45362 42971 / 45406 42579 / 52571
0.10h 30698 / 33009 30698 / 72488 30731 / 32449 30745 / 32432 30698 / 39355

24h
0.50h 66044 / 70412 66293 / 70158 66915 / 70625 67301 / 71037 65729 / 77819
0.25h 52347 / 55949 52285 / 68062 52693 / 55203 52828 / 55431 52285 / 63578
0.10h 37279 / 40011 37271 / 86363 37341 / 39354 37367 / 39320 37271 / 47195

ATLAS

36h
0.50h 802 / 872 823 / 881 820 / 874 836 / 894 746 / 797
0.25h 707 / 763 693 / 821 714 / 755 722 / 776 693 / 757
0.10h 556 / 590 555 / 1003 559 / 593 561 / 596 555 / 638

24h
0.50h 1063 / 1133 1097 / 1183 1086 / 1173 1126 / 1224 1023 / 1048
0.25h 897 / 960 877 / 1037 918 / 974 925 / 977 878 / 960
0.10h 684 / 729 680 / 1191 686 / 719 687 / 717 680 / 795

MOGON II

36h
0.50h 2303 / 2597 2321 / 2595 2387 / 2636 2474 / 2760 2298 / 2815
0.25h 2328 / 2643 2322 / 3330 2368 / 2604 2387 / 2639 2322 / 2895
0.10h 6250 / 7528 6250 / 10292 6252 / 7188 6253 / 7185 6250 / 8525

24h
0.50h 3359 / 3801 3381 / 3793 3424 / 3803 3491 / 3881 3215 / 3827
0.25h 7511 / 9031 7504 / 9898 7532 / 9965 7540 / 9713 7504 / 9392
0.10h 10694 / 13298 10694 / 17796 10706 / 13180 10722 / 13152 10694 / 15436

CURIE

36h
0.50h 98445 / 103589 98743 / 104090 98943 / 103087 99232 / 103335 98017 / 113145
0.25h 73681 / 77332 73594 / 90689 73907 / 76645 73982 / 76553 73594 / 87673
0.10h 549360 / 51850 49348 / 110411 49421 / 51091 49434 / 51011 49348 / 60729

24h
0.50h 124587 / 130151 124853 / 131017 125057 / 129434 125292 / 129749 123935 / 141707
0.25h 91944 / 95835 91446 / 110187 91805 / 94604 92202 / 94902 91446 / 107246
0.10h 60564 / 63190 60325 / 132490 60418 / 62131 60435 / 62038 60325 / 72588

Table II: Total checkpoint cost (time h) for all 10,000 simulations of each job using the six alternative methods(on the right) and our aware
approach (on the left). The values shown correspond to the simulations of Table I.

The savings for uncertain MTBF simulations are shown to
be above 6.0% and 7.5% in Tables I-c and I-d. Savings against
Tiwari increase slightly to 11.1% and 12.5% for an inaccurate
MTBF of −20% and +20% respectively. The savings over
Jayasekara and Daly are diminished by 1.1% for the under
estimation and increased by 0.4% for the over estimation.

Performing no checkpointing can save the entire overhead
of checkpointing, but computations are lost every time a failure
happens, incurring in a cost nevertheless. We observed that our
aware approach saves 49.39% of the failure costs on average
compared to no checkpointing at all.

4) Takeaway: From the simulations we can see how our
aware method can provide significant savings for entire HPC
workloads that include MPF and non-MPF jobs. Against the
best alternative methods our approach can obtain average
savings of 7.1%. Furthermore our approach is more robust
against non-accurately known MTBF values with average cost
savings of at least 6.0%. The savings are more significant
for systems like Mogon II where MPF workloads are very
prominent. Systems with other types of jobs like Curie benefit
less when a good enough alternative method is used.

The best alternative methods are Jayasekara and Daly and
we attribute the performance of Jayasekara to their solution
using a Lambert function that solves the exponential equation
present in the Poisson and Weibull failure distributions. The
performance of Daly is related to our method converging to it
at pfail → 1.

Our gains over the alternatives come from their assumption
that jobs fail with a high probability. Further gains over
Daly and Jayasekara come from them not considering Weibull
failures. Additional gains over Subasi and Tiwari come from

their simple mathematical form that slightly deviates from
Daly’s by using a hazard function and work-lost factor re-
spectively. Gains over Bouguerra can be attributed to the
its bad performance at large probabilities of failures. All
these methods may have merits under their own modeling for
pfail → 1, but are sub-optimal for MPF jobs.

VII. CONCLUSION

Checkpointing is an important resilience method in HPC
systems to reduce the loss of computations in case of fail-
ures. However, the runtime overhead of checkpointing highly
depends on the choice of the checkpoint interval and many
interval optimization studies have focused on jobs with a high
probability of failure, e.g., long-running jobs that use a large
part of the HPC system. Our observations of real HPC systems
revealed that jobs with a medium probability of failure (MPF)
are common and that current techniques fail to consider them
in checkpoint interval calculations.

In this paper we have proposed an MPF job aware method
for finding the checkpointing interval that minimizes the
expected cost of checkpointing for jobs with a medium proba-
bility of failure. This aware method also contains the classical
solutions for jobs with a high probability of failure. Moreover,
in contrast to previous works, our approach is independent of
a specific failure distribution and offers new examples of how
to accurately model cost properties using truncated moments
and weighted costs. The experiments shown employ job traces
of four HPC systems, five alternative methods, two failure
distributions and six failure parameters.

The savings for individual jobs with a medium probability
of failure may amount up to 40% of the checkpointing cost



average. For the four job traces of the HPC systems we report
cumulative checkpoint savings (of all jobs) from 7.1% to
25.7% when considering Weibull failures and between 7.3% to
27.5% for Poisson failures. The Mogon II HPC system sees
the highest average savings across all methods with 18.1%
checkpoint cost savings followed by the LANL Mustang
system with 13.0% savings. The LANL Atlas and Curie HPC
systems see 9.0% and 10.5% savings respectively. Finally we
also showed that our method has savings between 6.0% and
26.6% when only inaccurate MTBF values are available.
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