
1

An Analytical Model for Performance and
Lifetime Estimation of Hybrid DRAM-NVM Main

Memories
Reza Salkhordeh, Onur Mutlu, and Hossein Asadi

Abstract—Emerging Non-Volatile Memories (NVMs) have promising advantages (e.g., lower idle power, higher density, and non-
volatility) over the existing predominant main memory technology, DRAM. Yet, NVMs also have disadvantages (e.g., longer latencies,
higher active power, and limited endurance). System architects are therefore examining hybrid DRAM-NVM main memories to enable
the advantages of NVMs while avoiding the disadvantages as much as possible. Unfortunately, the hybrid memory design space is very
large and complex due to the existence of very different types of NVMs and their rapidly-changing characteristics. Therefore, optimization
of performance and lifetime of hybrid memory based computing platforms and their experimental evaluation using traditional simulation
methods can be very time-consuming and sometimes even impractical. As such, it is necessary to develop a fast and flexible analytical
model to estimate the performance and lifetime of hybrid memories on various workloads.

This paper presents an analytical model for hybrid memories based on Markov decision processes. The proposed model estimates
the hit ratio and lifetime for various configurations of DRAM-NVM hybrid main memories. Our model also provides accurate estimation
of the effect of data migration policies on the hybrid memory hit ratio (i.e., percentage of accesses supplied by either DRAM or NVM),
one of the most important factors in hybrid memory performance and lifetime. Such an analytical model can aid designers to tune hybrid
memory configurations to improve performance and/or lifetime. We present several optimizations that make our model more efficient
while maintaining its accuracy. Our experimental evaluations conducted using the PARSEC benchmark suite show that the proposed
model (a) accurately predicts the hybrid memory hit ratio compared to the state-of-the-art hybrid memory simulators with an average
(maximum) error of 4.61% (13.6%) on a commodity server (equipped with 192GB main memory and quad-core Xeon processor), (b)
accurately estimates the NVM lifetime with an average (maximum) error of 2.93% (8.8%), and (c) is on average (up to) 4x (10x) faster
than conventional state-of-the-art simulation platforms for hybrid memories.

Index Terms—Memory, Non-Volatile Memory, Analytical Modeling, Memory Systems, Reliability, Performance.

F

1 INTRODUCTION

Large-scale data-intensive applications increasingly re-
quire large and efficient main memory due their large data
footprints. Traditionally, Dynamic Random Access Memory
(DRAM) has been used as the predominant main memory
technology in computer systems due to its low cost per bit
($/GB), low access latency, and symmetric performance on
read and write accesses. DRAM technology, however, suffers
from major shortcomings, such as high idle power, low
scalability, and reduced reliability due to its fundamental
dependence on charge storage [1], [2], [3], [4].

To address the shortcomings of DRAM, emerging Non-
Volatile Memories (NVMs) offer promising characteristics,
such as low idle power, high density, and non-volatility [3],
[4], [5], [6], [7], [8], [9]. Example emerging NVM technologies
include Phase Change Memory (PCM), Spin-Transfer Torque
Magnetic Random-Access Memory (STT-MRAM), Metal Oxide
Resistive RAM, and memristors. NVMs, however, have sev-
eral drawbacks, such as limited endurance, longer latencies,
and high active power for write requests, which prevents
them from completely replacing DRAM as main memory [2],
[8].

In order to take advantage of the promising character-
istics of NVMs while minimizing the effect of their limita-
tions, previous studies suggested employing Hybrid Memory
Architectures (HMAs) composed of DRAM and NVMs in
a single level or multiple levels of the memory hierarchy
[8], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34]. Fig. 1 shows the general hardware structure
commonly used by HMAs. In this example HMA, each
memory device has a separate controller and is connected

MC

Core 1 Core n

CPU

Page 1 Page n... Page 1 Page n...

D
R

A
M

 D
IM

M

LLC

...

N
V

M
 D

IM
M

Hybrid Memory Controller (HMC)

Migration
Handler

Page Table

......

Monitoring

DRAM
Manager

NVM
Manager

LLC: Last Level Cache
MC: Memory Controller
NVM: Non-Volatile Memory
DIMM: Dual In-line Memory
Module

MC

Bank #1Bank #1

DRAM
Bus

NVM
Bus

Fig. 1: Hardware structure of an example HMA

to the memory bus using a traditional DRAM channel.1 In
HMAs, management policies can significantly affect system
performance. This necessitates significant effort to carefully
optimize such policies. In addition to selecting the most
suitable policies, our analysis in this paper reveals that
the internal configurations and parameters of the selected
policies also significantly affect system performance, which
is evaluated using the Average Memory Access Time (AMAT)
metric in this work. This metric, in turn, depends mainly on
the latency of memory devices and the hit ratio of the hybrid

1. The hybrid memory controller can be implemented either as a hard-
ware memory controller or a module in the Operating System. Migrat-
ing data pages from DRAM to NVM and vice versa is done by the same
memory bus via Direct Memory Access (DMA).

ar
X

iv
:1

90
3.

10
06

7v
1

 [
cs

.A
R

]
 2

4
M

ar
 2

01
9

2

memory. The hybrid memory hit ratio is defined as the ratio
of accesses to the virtual memory (excluding accesses that
hit in processor caches) that are supplied by either DRAM
or NVM.

To show the importance of the internal configura-
tions of hybrid memory management systems, we evaluate
the performance of two different software-based manage-
ment mechanisms used in HMAs (CLOCK-DWF [17] and
TwoLRU [18]) by assigning different values to their major
configuration parameters. As we show in our analysis in Fig.
2, performance2 of HMAs heavily depends on the selected
values for parameters used in each HMA management
mechanism. The performance difference is greater than 30%
(up to 150%) in many cases, which indicates the importance
of selecting the most suitable values for HMA parameters to
reduce the AMAT.

With such a significant effect HMA parameters have
on performance, memory architects put a lot of effort into
finding optimized parameters for HMA management mech-
anisms across a wide variety of workloads. Such studies
usually result in sub-optimal configurations for HMAs since
they explore and experiment in a limited design space. With
various configurations of HMAs and different types of
NVMs, the design space is very large, which makes design
and optimization of HMAs using traditional simulation-
based methods very time-consuming and sometimes im-
practical. In recent years, this problem has become even
more challenging due to rapid changes in NVM characteris-
tics. Any change in NVM characteristics requires re-running
time-consuming simulations to find optimized HMA param-
eters. Thus, using traditional simulation-based methods to
find suitable parameters for emerging HMAs for a specific
NVM and/or workload has become either very cumbersome
or extremely time-consuming due to the wide variety of de-
sign choices and fast evolution of NVMs. This shortcoming
exists in HMAs described in [17], [18].

To alleviate the shortcomings of simulation techniques,
it is very beneficial for system designers to have a fast but
accurate analytical performance model for HMAs. Analytical
modeling of an HMA enables designers to (a) perform
accurate performance analysis of any arbitrary HMA archi-
tecture, (b) explore various tradeoffs, and (c) quickly predict
the HMA hit ratio and NVM lifetime for a given HMA
configuration.

To our knowledge, no previous study has attempted to
analytically model HMAs. However, several analytical mod-
els have been proposed in previous studies for other levels
of the memory hierarchy, such as CPU cache management
policies [35], [36], [37], [38]. Gui et. al. [35] propose an ana-
lytical model to predict the hit ratio for Least Recently Used
(LRU)-based cache management policies based on circular

2. Throughout the paper, we use the terms performance and AMAT
interchangeably.

sequence profiling [39]. Another study attempts to model
LRU-based policies with less profiling overhead [36]. Due
to the fundamentally-different performance and endurance
characteristics of NVMs used in main memory and the
need to model the effects of the migration policy between
NVM and DRAM, to our knowledge, none of the previously
suggested analytical models are applicable to HMAs.

In this paper, we present the first analytical model for
HMAs. Our model can accurately a) predict the HMA hit ra-
tio, b) predict the lifetime of the NVM used in the HMA, and
c) provide an estimation of the effect of various parameters
of the HMA architecture, such as migration policy, on the
HMA hit ratio. The proposed model is applicable to a wide
range of HMAs (with a structure similar to the one presented
in Fig. 1).3 The proposed model can also accurately estimate
the effect of migration probability on the hybrid memory
hit ratio. This can be used to estimate the effect of internal
parameters of the examined HMA on the hybrid memory hit
ratio. To accurately estimate the hit ratio of a hybrid memory,
the proposed model uses three major inputs: a) an access
profile of the workload, b) probability of evicting each data
page when the HMA needs to free up space in main memory,
and c) the probability of promotion from NVM to DRAM
when a data page is accessed in NVM. We extract the first
input from the workload by using a trace analyzer while the
other two inputs are extracted from the target HMA.

To evaluate the performance and accuracy of the pro-
posed model, we have applied it to TwoLRU [18] and
CLOCK-DWF [17] architectures, which are the most re-
cent software-based HMAs.4 Experimental results over the
PARSEC and the SPEC CPU2006 benchmark suites show
that the proposed model can accurately predict the hybrid
memory hit ratio and AMAT of these two HMAs with an
average error of 4.61% (13.6% at most), and 2.99% (11.3% at
most), respectively. The proposed model can also estimate
the NVM lifetime with an average error of 2.93% (8.8% at
most). Our model is on average 10x (20x at most) faster than
performing simulations when estimating the hit ratio of 1000
different HMA configurations.

The main contributions of this paper are as follows:
• We introduce the first analytical model for hybrid mem-

ories. Our model can accurately predict the hit ratio of
general hybrid memories.

• The proposed model provides an easy-to-use framework
for designers to explore various trade-offs between hit
ratio and major configuration parameters of an arbitrary

3. Appendix A presents the assumptions on HMAs that can be
evaluated with the proposed analytical model.

4. HMAs with memory controller modifications are not evaluated
in our experiments since their full implementation in simulators is
rather complex and error-prone, which can lead to inaccurate results
for evaluating the proposed model. In other words, HMAs that require
hardware modifications do not have a ground-truth baseline to which
we can compare our model to.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

raytrace

stream
cluster

vips
x264

N
o

rm
a

li
z
e

d
 A

M
A

T 1 2 4 8 ∞

(a) CLOCK-DWF with Various “Expiration” Threshold Values (1, 2, 4,
8,∞)

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

raytrace

stream
cluster

vips
x264

N
o

rm
a

li
z
e

d
 A

M
A

T 1 4 16 32 ∞

(b) Two-LRU with Various “Migration” Threshold Values (1, 4, 16, 32,
∞)

Fig. 2: Effect of HMA parameters on AMAT

3

HMA. Such analysis is critical in exploring hybrid mem-
ory designs and optimizing the configuration of a hybrid
memory system.

• The proposed model can accurately estimate the NVM
lifetime without any additional computation and/or
memory overhead over hit ratio estimation.

• We develop an open-source framework, based on our
model, which can be used by architects and designers to
propose and evaluate new HMA designs, taking advan-
tage of emerging NVMs.5

2 PREVIOUS STUDIES

Numerous analytical models have been proposed in previ-
ous studies for the memory hierarchy and LRU-based cache
management policies [35], [36], [40], [41], [42], [43], [44], [45],
[46], [47], [48], [49]. The main goal of such models is to
predict the virtual memory or Last Level Cache (LLC) hit ratio
by profiling the running workload. Most of the previous
analytical studies use hit ratio as a main estimator for
performance as it can accurately represent the performance
of the memory hierarchy. Utilization is another predictor for
memory performance which is used in an analytical perfor-
mance model of main memory [43]. Predicting latency using
analytical modeling has also been examined in previous
studies using queuing models [44].

In [50], an analysis over memory workloads shows that
the stack distance of memory accesses follows a Zipf dis-
tribution law, which is also observed in other application
domains such as web caching and disk I/O [51], [52]. A
low-overhead hardware mechanism for calculating the stack
distance is proposed in [53]. The accuracy of modelling LRU-
based caching techniques is discussed in [54]. Extension
and generalization of such techniques is investigated in
[55], where temporal locality is included in the suggested
model. The behavior of LRU and First-In First-Out (FIFO)
policies can also be predicted using the low-complexity
method presented in [40]. A model for estimating CPU cache
miss ratio for age-based eviction policies is presented in
[56]. Estimating cache miss ratio based on reuse distance
is suggested in [45], [49], [57]. In [58], reuse distance is
modified to support hybrid cache line sizes. An analytical
model for cache eviction policies is proposed in [35], which
uses workload profiling and Markov processes in order to
predict the cache hit ratio. The profiler in [35] is based on
circular sequence profiling [39] that is obtained using a single
run of the workload and can be used for predicting the hit
ratio of many eviction policies. This profiler collects the total
number of accesses and the number of unique data pages
between each two consecutive accesses to a data page, which
is also employed in [46]. To reduce the profiling overhead,
a profiling technique is proposed in [36], which enables the
prediction of cache hit ratio under various eviction policies
and cache associativities. Queuing models can also be em-
ployed to predict the behavior of DRAM main memories
[44]. Such queuing models can be used for many on-chip
schedulers by re-arranging accesses in the trace file while
maintaining the high accuracy of the technique.

Since HMAs consist of more than one memory module
and have multiple governing policies for managing data pages,
the models discussed in this section cannot accurately predict
the hybrid memory behavior. In addition, the effect of page
migrations on the memory behavior cannot be modelled by
the traditional analytical models proposed for main memory
or caches.

5. http://dsn.ce.sharif.edu/software/

There are numerous HMAs proposed in previous stud-
ies, which require hardware modifications and/or controller
re-programming [8], [10], [11], [14], [15], [16], [59], [60]. A
simple write-only DRAM cache for NVM main memory
is proposed in [20] to increase NVM lifetime. [8] proposes
a lazy write technique to reduce the number of writes
in NVM by using DRAM as an intermediate cache. [15]
proposes a row-buffer-miss-aware HMA, which improves
performance by moving data blocks that frequently cause
row buffer misses to DRAM. HpMC [14] proposes a hybrid
inclusive/exclusive HMA in the memory controller that
attempts to switch DRAM between a cache for NVM and a
separate module visible to applications to reduce the energy
consumption. A modification of the CLOCK data structure
[61] with two CLOCK handles is proposed in [19] to reduce
the number of writes to NVM. Using two CLOCK handles
along with another CLOCK for frequency of accesses is
proposed in [62] to improve performance, lifetime, and
energy consumption of hybrid memories. CLOCK-DWF [17]
uses two CLOCK data structures to manage DRAM and
NVM memory modules and decide page demotions from
DRAM to NVM. To reduce the migration cost in terms of
performance and endurance, UH-MEM [12] and TwoLRU
[18] aim to limit the migrations by estimating their benefit
and cost.

3 CHARACTERIZATION OF TRACE FILES
Before presenting the proposed analytical model, we first
describe the methods for extracting the required inputs of
the proposed model from a memory access trace file. The
proposed model requires the frequency of sequences for esti-
mating the behavior of HMAs. A sequence is defined as a set
of accesses between two consecutive accesses to a data page.
As an example, consider an arbitrary sequence of accesses
to the data pages in Fig. 3. The corresponding sequence for
the second access to page “A” is <C, B, B, D, E, B, D> . It
contains the accesses between two consecutive accesses to
page “A”. In this access sequence, page “A” is called the
target data page. This notation is used throughout the paper.

The proposed analytical model also requires DRAM hit
probability in case of a hit in the HMA (PhitDRAM |hit).
The required computations for calculating PhitDRAM |hit
has O(n) time complexity. In the remainder of this section,
we first present the algorithm for extracting sequences of
requests and then propose a low-overhead mechanism for
estimating PhitDRAM |hit.

A C B B D E B D A D A

Target
Page

Target
Page

4 unique,
7 total

...
(,)

(,)
(,)

(0,0)
(,)

(,)
(2,2)

(2,2)
(7,4)

(1,1)
(1,1)

Sequence of Accesses

Fig. 3: Calculating sequence profiles

3.1 Extracting Sequences
The goal of sequence profiling is to find the number of total
and unique accesses between two consecutive accesses to
each data page. For each sequence of accesses between two
consecutive accesses to a data page, the sequence profiler
counts 1) the number of accesses in the sequence (denoted
as r), and 2) the number of unique data pages accessed in
the sequence (denoted as u). The sequence profiler computes
the (r,u) pair for consecutive accesses to the same data page.

4

It does not store sequences or the corresponding (r,u) pairs
for each data page. Only the frequency of observing each
pair is stored by the profiler. The u parameter is similar
to the reuse distance metric, which is employed in caching
algorithms [63]. As an example, there are a total of seven
accesses between two accesses to page “A” belonging to four
different data pages in Fig. 3. Therefore, the second access to
page “A” belongs to the (7, 4) pair. The second access to page
B belongs to (0, 0) since the second access is exactly after the
first access.

This profiling has O(rū) complexity, where ū is the aver-
age number of unique data pages in sequences. Algorithm 1
shows how (r,u) pairs are extracted from the trace file. The
profiler function is called for each request in the trace file
and the pairs variable holds the number of occurrences of
each (r,u) pair. For each request, if the address was accessed
before, this request will be considered a consecutive request
and the sequence for the previous access is calculated. This
data page is also added to the request sequences for all
other data pages. Our analysis shows that unlike the Last
Level Cache (LLC), a significant percentage of accesses to
virtual memory belongs to the (0,0) pair for traces obtained
from the PARSEC benchmark suite, as shown in Fig. 4. This
is due to the coarse granularity of data pages in virtual
memory (4KB/8KB), as opposed to the fine granularity of
cache blocks in LLC (32/64B).

Algorithm 1 Sequence Profiler Algorithm
1: map←Map()
2: pairs←Map()
3: procedure PROFILER(Request)
4: if Request.address in map then
5: sequence← map[Request.address]
6: pairs[len(sequence), len(unique(sequence))] += 1
7: map[Request.address]← new Array()
8: for seq in sequences do
9: seq.append(Request.address)

 0
 10
 20
 30
 40
 50
 60
 70

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

raytrace

stream
cluster

vips
x264

(0
,0

)
S

e
q

u
e

n
c

e
 (

%
)

Fig. 4: Percentage of consecutive accesses to a data page

3.2 DRAM Hit Estimation Model
In addition to the frequency of pairs, the proposed analytical
model requires hit probability in DRAM in case of a hit
access in hybrid memory (PhitDRAM |hit). This probability
enables the proposed model to stay memory-less and still
accurately predict the hit ratio of the HMA. Calculating an
accurate value of PhitDRAM |hit requires running different
workloads on the HMA and extracting the hit ratio of
DRAM. This goes against the goal of using an analytical
model, which requires predicting the hit ratio without run-
ning the workload on the target architecture. The profiler
calculates an estimation of PhitDRAM |hit. Previous analytical
models that can predict the position of a data page in a
queue after a certain number of accesses can be used to de-
termine PhitDRAM |hit. Such models, however, increase the
computational complexity from an nth degree polynomial
to an (n+m)

th degree polynomial, where n and m are
maximum number of accesses in a sequence and maximum

number of accesses to any data page, respectively. To ad-
dress such complexity, we propose a formula for predicting
PhitDRAM |hit with low complexity and less overhead. To
predict PhitDRAM |hit, we consider three scenarios: a) all
accesses to NVM result in a migration, called FREE-MIG,
b) no migration is allowed from NVM to DRAM, called NO-
MIG, and c) there is a probability for an access to NVM
to result in a migration from NVM to DRAM, called MIG-
PROB. We describe these three scenarios next.

3.2.1 FREE-MIG
The number of unique accesses in a sequence determines
the position of the target data page in DRAM/NVM when
the page is hit again. A sequence of accesses starts from an
access to the target data page and ends at the second access
to the same data page. In the FREE-MIG scenario (shown
in Fig. 5a), we use a simple LRU queue. When a sequence
starts, the target data page is at the head of the LRU queue.
The position of the target data page changes only when a
new data page (either present in the memory and after the
target data page in the queue or a miss access) is accessed.
Thus, the number of unique accesses can determine the
position of the target data page when the sequence ends.
If the number of unique data pages is less than the DRAM
size, the target data page will hit in DRAM.

To estimate the DRAM hit probability after extracting
sequences, the profiler groups sequences by their num-
ber of unique accesses (u) and creates a probability array
(probArr(i)) for all values between 0 and the maximum
value of u. The index of this array is the number of unique
accesses and its value stores the percentage of sequences
with the corresponding number of unique accesses. Note
that Prob[i] represents only the number of unique accesses,
regardless of whether the page resides in the HMA. A value
of 0.3 for probArr(1) means that by randomly selecting
an access from a trace file and computing its sequence
profile, it has 30% probability to have only one unique
access (similar to the third access to page D in Fig. 3).
To calculate PhitDRAM , we first assume that DRAM and
NVM are managed by a single LRU queue, where pages
in DRAM occupy the first DRAMSIZE positions of the
queue (scenario a). Therefore, each hit in NVM results in
migrating the data page to DRAM and demoting the last
data page in the DRAM queue to NVM, similar to Fig. 5a.
In this scenario, PhitDRAM is calculated based on probArr
using Equation 1, Equation 2, and Equation 3. PDbasic and
PNbasic denote the probability of a hit in DRAM and NVM,
respectively, when memory is managed by a simple LRU
replacement mechanism. Table 1 also summarizes the key
notational elements used in equations throughout the paper.

3.2.2 NO-MIG
In the second scenario (shown in Fig. 5b), no migration
is allowed from NVM to DRAM. We use a demotion arc
in the NO-MIG scenario since a new data page will be
added to DRAM only if the access misses in the HMA
(i.e., both DRAM and NVM) and thus, one of the data
pages currently residing in DRAM should be evicted from
DRAM to NVM to free up space for the newly-accessed
data page. By not allowing migrations, the NVM hit ratio
will increase since data pages that hit in the NVM will stay
there and such recently accessed data pages likely have a
high probability of being re-referenced in the near future.
Fig. 6 compares probArr values for scenarios (a) and (b) for
the PARSEC benchmark suite. The y-axis shows the values
in probArr array for all array indexes. P (DRAMmig) and
P (DRAMnoMig) denote DRAM hit probability in FREE-
MIG and NO-MIG, respectively. We observe that the increase

5

A B C D E F G H I J K

Hit access
DRAM NVM

Promotion

Eviction

Demotion

Miss

(a) Allowing all migrations (FREE-MIG)

A B C D E F G H I J K

Hit access
DRAM NVM

Eviction

Demotion

Miss

No Migration

(b) Preventing all migrations (NO-MIG)

A B C D E F G H I J K

Hit access
DRAM NVM

Promoton

Eviction

Demotion

Miss

No Migration

(c) Partially preventing migrations (MIG-PROB)

Fig. 5: Various policies for NVM to DRAM page migration

PDbasic =

DRAMSIZE∑

i:=0

ProbArr[i] (1)

PNbasic =

TOTALSIZE∑

i:=DRAMSIZE+1

ProbArr[i] (2)

PMissbasic = 1− (PDbasic + PNbasic) (3)

TABLE 1: Description of Notations
Notation Description
unique Probability that a request is the first access

to a data page.
eviction Eviction probability of the data page.
ProbArr[index] Array containing percentage of requests with

index number of unique accesses.
PDbasic Probability that an access hits in DRAM

when normal LRU is employed.
PNbasic Probability that an access hits in NVM

when normal LRU is employed.
PMissbasic Probability that an access misses from HMA

when normal LRU is employed.
PDnomig Probability that an access hits in DRAM

when no migration is allowed.
PNnomig Probability that an access hits in NVM

when no migration is allowed.
PD Probability that an access hits in DRAM

when migrations are allowed.
P (unique) Probability that the next access is a unique

access.
P (hitDRAM |hit) Probability that an access that hits in HMA

hits in DRAM.
PDRAMevictionsource Probability that a data page is moved to the

head of the NVM queue due to eviction from
DRAM.

PNV Mhitsource Probability that a data page is moved to the
head of the NVM queue due to a hit in NVM.

Rlatx Read latency for device x.
Wlatx Write latency for device x.
Rx Number of read accesses to device x.
Wx Number of write accesses to device x.
Miss Number of miss accesses.
MigtoNV M Number of migrations from DRAM to NVM.
DRAMSIZE DRAM size.
TOTALSIZE Total size of DRAM and NVM.
Pmig Probability that an access to a data page in

NVM results in a migration.
Pagefactor Number of writes required for migrating a

page.

in the NVM hit ratio causes all DRAM data pages to be
accessed less frequently (leading to almost 20% reduction in
the number of DRAM accesses compared to FREE-MIG). As
Fig. 6 shows, when no migration is allowed, the Most Re-
cently Used (MRU) position in DRAM (P (DRAMnoMig[0]))
still receives more than three times the accesses (on average)
than the MRU position in NVM (P (NVMnoMig[0])) since
newly-accessed data pages are moved to DRAM and such
data pages are accessed frequently.

An accessed data page in NVM has a hit probability
of PDbasic + PNbasic for its upcoming accesses in FREE-
MIG (as defined in Equation 1). Since the accessed data
pages in NVM will remain in NVM in NO-MIG, the NVM
hit ratio will be higher than that in FREE-MIG. A normal
eviction from DRAM in NO-MIG will have the same hit
probability as in FREE-MIG. The NVM hit ratio can be

calculated using Equation 4, where PDRAMevictionsource and
PNVMhitsource are probabilities of each source of moving a
data page to the head of the NVM LRU queue. The eviction
probability from DRAM (PDRAMeviction) is the same as
the HMA miss probability since each miss will result in
moving a data page to DRAM and consequently will result
in evicting a data page to NVM. NVM hit ratio is calculated
via P (hit|at queue head) where at queue head is equal to
PNVMhit + Pmiss in this scenario. Therefore, the NVM hit
ratio in NO-MIG can be calculated using Equation 5. The
description of notations used in Equation 5 is reported in
Table 1. Our analysis shows that the migration policy has
negligible effect on the total memory hit ratio, which enables
us to easily calculate the DRAM hit ratio based on the miss
probability of FREE-MIG and NVM hit ratio of NO-MIG
(Equation 5).

PNnomig = PDRAMevictionsource ∗ PNbasic + PNV Mhitsource∗
(PDbasic + PNbasic) (4)

PNnomig = PMissbasic/(PMissbasic + PNbasic) ∗ PNbasic

+ PNbasic/(PMissbasic + PNbasic) ∗ (PDbasic + PNbasic)

PDnomig = 1− PNnomig − PMissbasic (5)

3.2.3 MIG-PROB
The third scenario (shown in Fig. 5c) is the general case
where the migration probability (Pmig) decides whether
or not to migrate a page into DRAM when it is accessed
in NVM. If migration is allowed, we use the equation of
FREE-MIG. Otherwise, we use the equation of NO-MIG.
Therefore, the hit probability of DRAM can be calculated
using Equation 6.

In order to evaluate the accuracy of our DRAM hit rate
estimation model, Fig. 7 presents the percentage error in our
mechanism’s prediction of the DRAM hit rate. The error is
calculated by comparing the value of P (hitDRAM |hit) in
our model and the simulation method. The error reported
in Fig. 7 will not directly translate into error in our analytical
model for hybrid memories, since even if the place of a data
page is inaccurately predicted, there is a probability that the
proposed model correctly decides whether the request will
be hit or miss. This is dependent on the number of unique
pages in sequence profiles. If an access has a few unique
pages in its sequence, there is a high probability that the
data page remains in the HMA under most of the eviction
policies.

4 WORKFLOW
In this section, we present the overall workflow of our
HMA hit ratio estimation model using a simple example.
The process of estimating the HMA hit ratio consists of two
stages: 1) collecting inputs and 2) applying the proposed
analytical model to the inputs. The first stage requires 1)
analyzing a trace file containing accesses to the memory and
2) examining the HMA to extract the necessary information.
In the second stage, we configure the proposed analytical
model, which is based on Markov decision processes, using

6

 0.0001

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100

p
ro

b
A

rr
[i

n
d

e
x
]

index

FREE-MIG NO-MIG

P(DRAMmig)=1.83×P(DRAMnoMig)

P(DRAMnoMig[0])=2.06×P(NVMnoMig[0])

(a) blackscholes

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

p
ro

b
A

rr
[i

n
d

e
x

]

index

FREE-MIG NO-MIG

P(DRAMmig)=2.21×P(DRAMnoMig)

P(DRAMnoMig[0])=1.68×P(NVMnoMig[0])

(b) bodytrack

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

p
ro

b
A

rr
[i

n
d

e
x
]

index

FREE-MIG NO-MIG

P(DRAMmig)=1.26×P(DRAMnoMig)

P(DRAMnoMig[0])=4.57×P(NVMnoMig[0])

(c) canneal

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

p
ro

b
A

rr
[i

n
d

e
x

]

index

FREE-MIG NO-MIG

P(DRAMmig)=1.34×P(DRAMnoMig)

P(DRAMnoMig[0])=3.66×P(NVMnoMig[0])

(d) dedup

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

p
ro

b
A

rr
[i

n
d

e
x

]

index

FREE-MIG NO-MIG

P(DRAMmig)=1.67×P(DRAMnoMig)

P(DRAMnoMig[0])=2.1×P(NVMnoMig[0])

(e) facesim

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

p
ro

b
A

rr
[i

n
d

e
x

]

index

FREE-MIG NO-MIG

P(DRAMmig)=1.24×P(DRAMnoMig)

P(DRAMnoMig[0])=5.51×P(NVMnoMig[0])

(f) ferret

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

p
ro

b
A

rr
[i

n
d

e
x

]

index

FREE-MIG NO-MIG

P(DRAMmig)=1.3×P(DRAMnoMig)

P(DRAMnoMig[0])=4.43×P(NVMnoMig[0])

(g) fluidanimate

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

p
ro

b
A

rr
[i

n
d

e
x

]

index

FREE-MIG NO-MIG

P(DRAMmig)=1.95×P(DRAMnoMig)

P(DRAMnoMig[0])=2×P(NVMnoMig[0])

(h) freqmine

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

p
ro

b
A

rr
[i

n
d

e
x

]

index

FREE-MIG NO-MIG

P(DRAMmig)=1.82×P(DRAMnoMig)

P(DRAMnoMig[0])=2.01×P(NVMnoMig[0])

(i) raytrace

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

p
ro

b
A

rr
[i

n
d

e
x

]

index

FREE-MIG NO-MIG

P(DRAMmig)=1.56×P(DRAMnoMig)

P(DRAMnoMig[0])=6.74×P(NVMnoMig[0])

(j) streamcluster

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

p
ro

b
A

rr
[i

n
d

e
x

]

index

FREE-MIG NO-MIG

P(DRAMmig)=4.13×P(DRAMnoMig)

P(DRAMnoMig[0])=1.24×P(NVMnoMig[0])

(k) vips

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

p
ro

b
A

rr
[i

n
d

e
x

]

index

FREE-MIG NO-MIG

P(DRAMmig)=1.83×P(DRAMnoMig)

P(DRAMnoMig[0])=1.8×P(NVMnoMig[0])

(l) x264

Fig. 6: Access distribution of various migration policies (in each subfigure, probArr[index] is reported for index values
ranging from 0 to 100)

PD = PDnomig ∗ (1− Pmig) + PDbasic ∗ Pmig (6)

 0

 2

 4

 6

 8

 10

 12

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

raytrace

stream
cluster

vips
x264

33 30 11.97

E
rr

o
r

P
e
rc

e
n

ta
g

e
 (

%
)

Fig. 7: Percentage error in predicting P (hitDRAM |hit)
using our DRAM hit rate estimation model

the extracted information and then estimate the HMA hit
ratio by solving the analytical model.

Fig. 8 demonstrates the overall workflow of the proposed
model. 1 Profiler collects the required information from the
trace file, which consists of (a) the frequency of (r,u) and
(b) an estimation of the hit probability in DRAM in case

Seq.
Solver

P(hitDRAM | hit)

Miss/
Migration

Solver

P(miss)

Arch. P(mig)

Markov
Solver

a , 10 w , 5

b , 7 f , 11

Common
Initial States

<State, Transition, Probability>

<Sequence, Weight>ProfilerTrace File

P(miss)

P(transitions)
P(migration)
P(hitDRAM)

Weight

P(miss)
Weight
P(migration)

1

2

3

4 5

Fig. 8: Overall workflow of the proposed model

of an HMA hit. Section 3 already presented the detailed
algorithm for the profiler. If we assume Fig. 3 shows an
example trace file, the profiler extracts the sequences and
their corresponding weights, as reported in Table 2. In the
example trace file shown in Fig. 3, the (1,1) pair is found
twice out of a total of the 11 requests. Therefore, the weight
of (1,1) pair is 2

11 . The special sequence <∞,∞> denotes the
first access to each data page, which will be a miss regardless
of the examined HMA. Once such information is extracted,
the trace file is no longer required for further steps.

In the proposed model, the HMA miss ratio is computed
using the formula shown in Equation 7. In this equation, the
α variables denote the weights of sequences (e.g., the weight
values reported in Table 2). The Markov function computes
the miss ratio for the input values based on a Markov
model. Equation 8 shows the HMA miss ratio formula for
the example trace file and its extracted weights (reported in
Table 2).

HMAMissRatio =α∞,∞ ∗Markov(∞,∞) + α0,0 ∗Markov(0, 0)+

α1,1 ∗Markov(1, 1) + α2,1 ∗Markov(2, 1) + . . .
(7)

HMAMissRatio =

5

11
∗Markov(∞,∞)+

1

11
∗Markov(0, 0) +

2

11
∗Markov(1, 1)+

2

11
∗Markov(2, 2) +

1

11
∗Markov(7, 4) (8)

2 Markov Solver solves the Markov process for all
sequences. Since the equations in this step are dependent
only on the initial states, the output can be reused for any
trace file and/or HMA. As an example, consider the simple
example Markov process shown in Fig. 9, where r and u
are two parameters of sequences. For this example, Fig.
10 depicts the recursive calls for calculating the miss ratio

7

TABLE 2: Extracted sequences and their weights from the
example trace file in Fig. 3

Sequence <∞,∞> <0, 0> <1, 1> <2, 2> <7, 4>

Weight (αr,u)
5
11

1
11

2
11

2
11

1
11

(r, u)

(r-1, u)

Miss = 1

(r-1, u-1)

Miss = 0
r = 0

Eviction
unique

not-unique

Fig. 9: Example Markov model of a simple memory manage-
ment mechanism. r and u in the (r,u) pair denote the total
and unique number of remaining accesses in the examined
access sequence, respectively.

of a sequence. Since the number of remaining requests (r)
cannot be less than the number of remaining unique requests
(u), many states, such as (1,2), are not possible and thus,
are not considered in the computations. Equation 9 shows
the expanded formula for calculating the Markov process
depicted in Fig. 10. The first access to a data page in a
sequence is considered unique while later accesses to the
same data page are not unique. The eviction parameter
denotes the probability that the target data page is evicted
from the HMA on the next HMA miss access. To understand
the eviction parameter, consider the LRU algorithm. In LRU,
the last data page in the LRU queue is evicted when a
new data page is added and the memory is full. Therefore,
eviction for all data pages will be equal to zero except the
last data page in the queue, which will have eviction equal
to one. The CLOCK algorithm, which employs a similar
deterministic approach as LRU also has a single data page
with eviction equal to one, while all other data pages have
eviction equal to zero.

3 In the next step, the target HMA is analyzed to
extract the transition probabilities of the Markov states. The
probabilities can be a function of the inner state of hybrid
memory, i.e, position of the target data page in the queue. To
solve Equation 8, 4 Seq. Solver and 5 Miss/Migration Solver
receive the values for the variables of Markov equations.
Considering a very simple memory architecture that ran-
domly evicts data pages (i.e., eviction = 1/size), Equation
10 solves the sample miss ratio formula in Equation 9 for this
memory architecture assuming size is equal to 4. Solution
of the equation is divided into two steps to minimize the
required computations by reusing the outputs of previous
runs, i.e., a) running an HMA over various trace files and b)
showing the effect of various migration probabilities on hit
ratio.

5 PROPOSED ANALYTICAL MODEL
The proposed analytical model attempts to estimate the hit
ratio of HMAs using Markov decision processes [64]. A
Markov process is composed of a) initial states and their
weights, b) transitions between states, and c) transition prob-
abilities. The initial states and their corresponding weights
are determined by the data collected from the trace files
(as described in Section 3). The transitions of the proposed
model are the same across different HMAs while transition
probabilities are dependent on the target HMA. Section 5.1
describes the states of the proposed analytical model. Section
5.2 and Section 5.3 present transitions and their probabilities,
respectively.

(2,2)

(1,2) Miss = 1

(1,1)
unique

evictionnot unique

Miss = 1

eviction

(0,0) Miss=0

(0,1)

unique r=0

not unique

Initial State

Not possible

Final state

Fig. 10: Recursive calls to compute an arbitrary sequence
Markov(2, 2) (9)
= unique ∗ eviction ∗ 1 + (1− eviction) ∗ unique ∗Markov(1, 1)

= unique∗ eviction+ (1− eviction)∗unique ∗ (unique ∗ eviction ∗ 1+
(1− eviction) ∗ unique ∗Markov(0, 0))

= unique ∗ eviction ∗ (unique− unique ∗ eviction+ 1)

Markov(2, 2) = 1 ∗ 1

size
∗ (1−1 ∗ 1

size
+ 1)

size=4
=

1

4
∗ (1− 1

4
+1) =

7

16
(10)

5.1 States
The states of the Markov model are defined recursively,
where the depth of recursion is equal to the number of
accesses in the currently-processed (r,u) pair. Since in all
transitions, the number of remaining requests (r) decreases
by one, the proposed model will have a finite number of
states under any HMA. Each state in the Markov process
of the proposed model is identified with four parameters,
denoted as (r, u,m, p):
• Request (r): Number of accesses in the remainder of the

sequence
• Unique (u): Number of unique data pages in the remain-

der of the sequence
• Memory (m): current memory in which the target data

page resides
• Position (p): current position of the target data page in the

memory queue
Note that Markov states are not dependent on the data

pages and their addresses. For instance, the state (3, 2,
DRAM, 0) can be used for both of the following access
patterns: [1000, 1001, 1002, 1001, 1000] and [2500, 1200, 3001,
3001, 2500]. The data page with position 0 is the last data
page that will be evicted from the memory. Similarly, the
data page whose position value set to the number of data
pages is the first data page to be evicted. In other words,
Position denotes the number of data pages that remain in
memory right after evicting the target data page. For the
LRU algorithm, this value is simply equal to the position of
the target data page in the LRU queue. For more complex al-
gorithms such as CLOCK, the data pages can still be ordered
based on the clock hand position and the referenced bit. For
instance, Fig. 11 shows the state of a memory architecture
managed by the CLOCK algorithm. The value of Position for
target data page C will be six since exactly after evicting the
data page C, 6 data pages remain in the memory (data pages
A, D, E, F, G, H). Thus, the CLOCK hand and any other
parameters of the memory management algorithms can be
encoded into Position.

A

B

C
DE

F

G

H
I J

Referenced

Not
Referenced

Fig. 11: An example CLOCK data structure

Each state in the proposed Markov model needs to store
the (r,u) pair to calculate the transition probabilities and

8

identify terminating states. The states of the Markov model
follow a target data page between two accesses to the target
data page. This is done to find the probability that the data
page is evicted from the memory. The remainder of accesses
determines how many transitions we need to execute on the
Markov state to reach the final state. The number of unique
remainder pages is employed to increase the accuracy of the
proposed model. The first access to a unique page will be
a miss access, which requires evicting a data page from the
memory (HMA). The number of evicted data pages greatly
affects the probability that the target data page is evicted
from the memory. Consider two sequences, both with 10
accesses, where the number of unique data pages in the
first sequence is equal to three and in the second sequence
is equal to 10. The probability that the target data page is
evicted from the memory is higher in the second sequence
since more data pages should be evicted from the memory.

The relative position (p) of the target data page compared
to the other data pages in HMA is stored in states to
calculate the transition probabilities. Although the Markov
model does not need additional information in the states, a
Boolean variable (m) is also stored in each state to determine
the residing memory of the target data page. The current
residing memory of the target data page can be calculated
using the relative position of the data page in memory queue
(p) and the size of the memory modules. This, however,
restricts the reusability of calculations to specific memory
module sizes. Thus, storing the residing memory of the
target data page reduces the computation.

In contrast to modeling a single memory architecture, a
hybrid memory model should have two originating states
since the corresponding data page might reside in either
DRAM or NVM. Therefore, our model calculates the miss
probability of each access for both cases and uses their
weighted average as the miss probability. The weights are
determined based on the equations presented in Section 3
and are calculated only once per trace file, which enables
their reuse for any HMA.

To clarify the states, let’s consider an example HMA
with four DRAM and five NVM data pages, shown in Fig.
12. Since the target data page is in the third position of
the DRAM queue, it has the state of (x,y,DRAM,2). Note
that the position is zero-indexed. A miss access will change
the state to (x-1,y-1,DRAM,3) as depicted in Fig. 12. Each
access reduces the number of remaining requests (x). A miss
request is to an address that has not been accessed before.
It is considered a unique request. Therefore, the number of
remaining unique data pages (y) is reduced by one. Miss
accesses result in moving the data page to DRAM, which
results in shifting the target data page from position 2 to
position 3.

DRAM NVM

State = (x, y, DRAM, 2)

State = (x-1, y-1, DRAM, 3)

Miss

DRAM NVM

Fig. 12: Effect of a miss access on the Markov state

5.2 Transitions
Transitions between states are defined based on the possible
conditions of the requests. Our model considers four con-
ditions of requests: 1) hit/miss: Requests can be either hit
or miss in the memory. Miss accesses result in moving a
new data page to the memory and therefore changing the
position of the target data page. 2) before/after: By considering
the total order of pages in memory, each hit access can be
either before or after the target data page, which might affect
the target data page position. 3) uniqueness: The first access
to a data page in the sequence has a distinct outcome from
the next access to the same data page due to the policies
employed in the HMA. 4) migrations: Requests can result
in migrating the accessed data page between memories.
The discussed conditions are not independent of each other
and many of their combinations may not be possible in the
examined HMA. For instance, the transition in Fig. 12 is a
unique miss access (cases 3 and 1). The other two conditions
are not applicable since both are defined only when the
access is a hit in the HMA.

Table 3 shows the transitions of the proposed analytical
model. Since the transitions and their destination states
differ based on the residing memory of the target data page,
DRAM and NVM cases are shown separately. “N/A” values
in Table 3 depict Not Applicable and/or an invalid combi-
nation of conditions. We assign each transition a unique
number, which we will refer to throughout the paper. Unique
shows that the current request is a unique request in the
current sequence. Hit shows that the current request is a
hit in the HMA (DRAM or NVM). If a request is a hit, the
Before/After column states whether it is hit in the data pages
queue before or after the target data page. The NVM queue
is considered after the DRAM queue when comparing the
positions of data pages. Section 5.3.3 details the Before/After
parameter. Migration Mig. shows if the current request will
result in the migration of its corresponding data page from
NVM to DRAM. Destination (Dest.) depicts the destination
state of the transition. If the target data page is selected
for eviction from DRAM, the destination state will be set
to <r,u,NVM,0>. Choosing the target data page for eviction
from NVM will result in miss = 1 since the next access to
an evicted data page will always be a miss.

The Markov process of the proposed analytical model is
depicted in Fig. 13. States are grouped based on the residing
memory of the target data page (i.e., the third identifying
parameter of a state). The only interaction between DRAM
and NVM for the target data page is through eviction
from DRAM. The Markov process has two final states. All
sequences will reach one of the final states in at most r
transitions. This is because we reduce the r parameter in
all of the transitions (except transition 9) and declare a state
final when r reaches zero. Transition 9 cannot create an
infinite loop since there is no transition back from NVM to
DRAM to complete such a loop. The promotions (migrations
from NVM to DRAM) are not present in the Markov process
because of their intrinsic difference from demotions (migra-

(r, u, DRAM, p)

(r-1, u, DRAM, p+1)

(r-1, u, DRAM, p)

(r-1, u-1, DRAM, p+1)

(r-1, u-1, DRAM, p)

(r, u, NVM, p)

(r, u, NVM, 0)

(r-1, u, NVM, p+1)

(r-1, u, NVM, p)

(r-1, u-1, NVM, p+1)

(r-1, u-1, NVM, p)
Miss = 1

Miss = 0

DRAM NVM

Final States

7 85

2 3

7

1 4

9

10

10 13

17
15

14 16

12

11

*

*

*Transition has more than one destination state.

Fig. 13: Markov process of the proposed analytical model

9

TABLE 3: State transitions in the proposed model
DRAM NVM

No. Unique
P (unique)

Hit
P (hit)

Before/After
(Equation 11)

Mig.
Pmig

Dest. No. Unique
P (unique)

Hit
P (hit)

Before/After
(Equation 11)

Mig.
Pmig

Dest.

1 × × N/A N/A (r-1, u, D, p+1) 11 × × N/A N/A (r-1, u, N, p+1)

2 × X Before N/A (r-1, u, D, p) 12 × X Before N/A (r-1, u, N, p)

3 × X After × hit in DRAM: 0
hit in NVM: (r-1, u, D, p) 13 × X After × 0

4 × X After X hit in DRAM: 0
hit in NVM: (r-1, u, D, p+1)

5 X × N/A N/A (r-1, u-1, D, p+1) 14 X × N/A N/A (r-1, u-1, N, p+1)

6 X X Before N/A 0 15 X X Before N/A (r-1, u-1, N, p)

7 X X After × hit in DRAM: (r-1, u-1, D, p+1)
hit in NVM: (r-1, u-1, D, p) 16 X X After N/A (r-1, u-1, N, p+1)

8 X X After X (r-1, u-1, D, p+1)

9 (¬Hit ∧ evict)⇒ state = (r, u,NVM, 0) 17 (¬Hit ∧ evict)⇒ miss = 1

10 (r = 0 or u = 0)⇒ miss = 0

tions from DRAM to NVM). A data page can be promoted
only when it is accessed. However, sequences are constructed
from accesses to other data pages between two consecutive
accesses to the target data page and therefore, no access
to the target data page exists in the sequence. As such, it
is not possible for the target data page to be promoted.
Promotions of the other data pages, however, are considered
in the proposed model (transitions 4 and 8).

Transitions 9, 10, and 17 are exceptional transitions and
their conditions will be examined before other transitions.
In miss accesses, Mig. and Before/After conditions are not ap-
plicable (transitions 1, 5, 11, 14). Both conditions are defined
only when the request is a hit in the HMA. If a request is a
hit, it can be a hit either before or after the target data page.
A hit before the target data page will not have any effect
on the target data page’s position in the queue (transitions
2, 12, and 15). Transition 6 is not practical since data pages
before the target data page are accessed at least once and
hence, cannot be unique. A hit after the target data page
in NVM (transition 16) will result in increasing the position
value in the state regardless of whether or not a migration
happens. The output of a hit after the target data page in
DRAM, however, depends on the probability of migration.
If an access hits in NVM and 1) the data page migrates to
DRAM, the target data page will be shifted into the queue
(transitions 4 and 8), 2) otherwise, if the page does not
migrate to DRAM, the target data page will stay in the same
position as before (transitions 3 and 7). A non-unique access
cannot hit in DRAM if the target data page also resides in
DRAM (transitions 3 and 4) since non-unique data pages
are either before (as in the Before/After parameter of Markov
states) the target data page in DRAM or reside in NVM.
Similar to transition 6, transition 13 is also impractical. Non-
unique pages have been accessed before and therefore, either
reside in DRAM or before the target data page in NVM.

5.3 Transition probabilities
In order to accurately estimate the miss probability of each
state, the probabilities of transitions are also required. The
sum of probabilities of transitions going out of each state
should be equal to one. Since transitions are based on four
parameters (uniqueness, hit, before/after, and migration),
the probability of a transition is calculated based on the
probability of each of the four parameters, which we will
present in the remainder of this section.
5.3.1 Uniqueness
In a given state with r requests and u unique data pages,
P (unique) denotes the probability that the next processed
access is a unique access. Our analysis shows that the num-
ber of unique accesses has a higher impact on the HMA hit
ratio than the order of unique accesses inside the sequence.

This is also demonstrated in previous studies that employed
sequence profiling [35]. Therefore, we consider each access
to have an equal probability to be unique. Based on this
assumption, the probability of uniqueness is calculated as:
P (unique) = u

r .

5.3.2 Hit Probability
Hit probability (HMA hit ratio) in the transition probabil-
ities can either be set to a constant value or remains as a
variable in the equations. Since predicting hit probability
is the main goal of the proposed analytical model, using a
constant value for this parameter will reduce the accuracy
of the model. Therefore, P (hit) remains as a variable in
the transition probabilities of our model. Replacing P (hit)
with a constant value significantly reduces the required
computational processing power to solve the final equation
in Miss/Migration Solver. By using a constant value for P (hit)
and iteratively improving its accuracy, one can compute the
final hit ratio. This technique, however, requires an accurate
initial value for P (hit) and is beneficial only when the
miss/migration solver cannot solve the formula due to the
high degree of the polynomial equation. In the proposed
analytical model, we solve the the Markov model by leaving
P (hit) as a variable, to increase the accuracy of the model.

5.3.3 Before/After
In order to estimate the position of the target data page in
the case of a hit in the HMA, we should decide whether the
accessed data page is hit before or after the target data page.
The Before/After parameter denotes the relative position of
the accessed data page compared to the target data page
if we sort the data pages based on their eviction time. A
data page is labeled before if the target data page is evicted
before the accessed data page and vice versa. For instance,
considering the target data page C in Fig. 11, the data pages
(I, J, and B) are labeled after and other data pages will be
labeled before. In the proposed analytical model, we use the
stack distance data in probArr to estimate the before/after
probability of a data page. If the target data page resides
in DRAM, P (before) is calculated by summing all values
of probArr in positions before the target data page. Since
this probability is defined as P (before|hit), we do not need
to consider the miss probability in P (before) or P (after).
The migration probability, however, affects P (before|hit)
since the distribution of stack distance is dependent on
the migration probability. Therefore, probArr is computed
with respect to Equation 6. In addition, the probabilities in
probArr are calculated as P (i|hit) for an arbitrary position
i, which enables us to sum their values without the need
for additional calculations. If the target data page resides in
NVM, a hit data page might be hit in DRAM, before the

10

target data page in NVM, or after the target data page. The
hit probability in DRAM is pre-calculated in Equation 6 and
the hit before the target data page in NVM is calculated
using probArr. Equation 11 shows the overall formula for
estimating before/after probability for an arbitrary data page
residing in position M .

P (beforeM |hit) = (11)



∑M
i=DRAMstart

ProbArr(i) if M ∈ DRAM

P (hitDRAM |hit)+∑M
i=NVMstart

ProbArr(i) if M ∈ NVM

5.3.4 Migrations
Migration probability is one of the design parameters of
the examined HMAs, which depicts the probability that an
access to NVM can result in migrating the corresponding
data page to DRAM. This probability can either be set to a)
a fixed value to calculate the performance or b) a formula
to calculate the effect of various migration policies on the
performance. The fixed value can be set 1) according to the
empirical studies on the examined hybrid memory or 2) by
substituting the migration variables with actual values from
the HMA in the provided formula. Section 6.1 describes
the process of extracting the migration probability from the
examined hybrid memories.

5.4 AMAT & NVM Lifetime Estimation
The proposed model estimates the HMA hit ratio using a
trace file for a given HMA. By slightly modifying transitions
and storing additional data, the proposed model can also
estimate AMAT and NVM lifetime.

To estimate AMAT, a) the number of accesses to each
memory, b) read/write ratio, c) the number of migrations,
and d) the number of miss accesses are required. The number
of accesses to each memory (a) can simply be computed by
using PHitDRAM |hit and estimated hit ratio by the proposed
analytical model. The read/write ratio (b) is collected while
parsing the trace file. The other two parameters (c and d)
are already estimated by the proposed model. This method,
however, has a few limitations. For example, it does not
consider the concurrent processing of requests by the mem-
ory controller. To address this shortcoming, the concurrency
of the requests is included in the average response time of
the memory when computing HMA average response time.
Thus, the error of the formula to calculate AMAT is low.

The NVM lifetime depends on a) the number of writes
and b) the wear-leveling algorithm employed in the NVM.
The wear-leveling algorithm is a design parameter of the
NVM memory device. It has almost a fixed effect on the
NVM lifetime. Wear-leveling algorithms try to erase data
blocks that are a) mostly read or b) have low erase count,
to evenly distribute erase count across all blocks. Both cases
add additional writes to the NVM, compared to the normal
garbage collection operations. These algorithms limit the
rate of erasing data blocks to reduce the impact of wear-
leveling on NVM lifetime. Therefore, we can consider a fixed
overhead for wear-leveling algorithms in our evaluations.
The experimental results in previous studies also have such
a fixed overhead in various workloads [65], [66], [67]. Thus,
by estimating the NVM writes, we can estimate the NVM
lifetime. NVM lifetime estimation requires a) the number of
writes to NVM, b) the number of migrations to NVM, and
c) the number of disk-to-NVM page copy operations. The
first parameter can be estimated by the number of accesses
to NVM and the write ratio of the trace file. The second pa-
rameter is estimated during the hit ratio estimation process
by counting the number of times transition 9 is triggered.

To calculate the third parameter, the page fault destination
of the examined HMA is considered, which can have one
of the three scenarios: a) the data page is copied from disk
to DRAM in the case of a page fault, b) the data page is
copied from disk to NVM, and c) the data page is copied to
either DRAM or NVM based on request type (read/write).
In the first scenario, the number of disk to NVM page copy
operations will be zero. In the second scenario, it will be
equal to the number of miss accesses. In the last scenario, it
will be computed by the number of miss accesses and the
read/write ratio of the trace file.

6 EXPERIMENTAL SETUP & RESULTS
In this section, we describe our evaluation methodology
and experimental results of our model, compared to the
traditional simulation method. Section 6.1 presents our ex-
perimental setup. Section 6.2 reports accuracy and Section
6.3 reports the computation time. Section 6.4 presents an
application of the proposed analytical model. Finally, Section
6.5 discusses the overhead of using the proposed analytical
model.

6.1 Experimental Setup & HMA Modeling
We evaluate our analytical model using two recent HMAs
(TwoLRU [18] and CLOCK-DWF [17]). These HMAs enable
us to measure the accuracy of the proposed model for HMAs
based on LRU and CLOCK. All experiments are conducted
on a server with 3.3 GHz CPU and 192 GB memory running
a Linux kernel. For fair comparison, we use a single CPU
core to perform computations of both our model and for
the baseline simulation method. The input trace files are
captured by running the PARSEC benchmark suite [68] in
the COTSon [69] full system simulator. Table 4 reports the
characteristics of the trace files.

TABLE 4: Workload characteristics

Workload Unique Pages Read Requests Write Requests
Blackscholes 5,188 26,242 (100%) 0 (0%)

Bodytrack 25,304 658,606 (62%) 403,835 (38%)
Canneal 164,768 24,432,900 (98%) 653,623 (2%)
Dedup 512,460 17,187,130 (71%) 6,998,314 (29%)

Facesim 210,368 11,730,278 (66%) 6,137,519 (34%)
Ferret 68,904 54,538,546 (89%) 7,033,936 (11%)

Fluidanimate 266,120 9,951,202 (69%) 4,492,775 (31%)
Freqmine 156,108 8,427,181 (69%) 3,947,122 (31%)
Raytrace 57,116 1,807,142 (83%) 370,573 (17%)

Streamcluster 15,452 168,666,464 (99.8%) 448,612 (0.2%)
Vips 115,380 5,802,657 (59%) 4,117,660 (41%)
X264 80,232 14,669,353 (74%) 5,220,400 (26%)

Most hybrid memories (including TwoLRU and CLOCK-
DWF) implement a variation of either LRU or CLOCK as
their DRAM and NVM eviction policies. Both policies have
a deterministic algorithm for finding the victim data page.
In LRU, the last data page in the queue and in CLOCK, the
first data page with the reference bit set to 0 after the clock
handle is evicted. Thus, only one data page is eligible for
eviction, which has an eviction probability of 1. The eviction
probability of all other data pages is 0. TwoLRU employs
LRU as the eviction policy of both DRAM and NVM. Hence,
the eviction probability for this architecture is the same as
LRU. The NVM clock in CLOCK-DWF is a simple CLOCK
algorithm without any modifications and thus we use the
simple eviction probability based on the clock algorithm in
the experiments. Although the CLOCK algorithm in DRAM
determines the victim data page based on the values of
counters stored for data pages, only one page is eligible for
eviction. The proposed analytical model, however, does not
store the actual values of counters and cannot determine
the exact victim data page. Instead of the actual values,

11

an approximate order of data pages based on the counter
values is stored by the proposed analytical model. Based
on this information, we can estimate the victim data page
using two options: a) select the data page with the smallest
counter value, and b) set a probability for data pages based
on their order of counter values. In the experiments, we
choose the first option since it simplifies the computations
and its output is closer to the actual output of CLOCK-DWF.

The migration policy determines the probability that
an access in NVM results in migrating the accessed data
page to DRAM. The migration probability is extracted from
the examined hybrid memory by analyzing the migration
policy and conditions resulting in a migration. CLOCK-
DWF migrates a data page from NVM to DRAM on a write
access to the page. Thus, the probability of migration is
equal to the probability that an access is a write access.
In the proposed analytical model, we consider the write
ratio of accesses in the trace file as the write probability and
hence, the migration probability of CLOCK-DWF. TwoLRU
employs a counter-based method to decide whether or not
the accessed data page should be migrated from NVM to
DRAM. Accurately formulating this method requires storing
additional data, which significantly increases the memory
and computation overhead of the proposed model. To avoid
such cost, we approximate the complex migration policy into
a simple probability function. To construct this function, we
analyze the migration probability under various threshold
counters, and construct a table (Table 5) that translates the
threshold counters to migration probabilities. We use this
table in our proposed analytical model. Since we employ
this simple function in our model for TwoLRU, we expect
our model would have slightly higher accuracy in modeling
of CLOCK-DWF than modeling TwoLRU.

TABLE 5: Migration probabilities for various thresholds in
TwoLRU

Threshold Migration Probability
1 0.16
4 0.13
8 0.08
16 0.05

6.2 Accuracy
The main goal of the proposed analytical model is to ac-
curately estimate the hit ratio and performance of main

memory under various HMA configurations. We evaluate
the accuracy of the proposed model using the error in the
estimated hit ratio and estimated performance, compared to
the baseline simulation method. Relative error is defined as
the relative difference between the hit ratio estimated by the
proposed model (Hitestimated) and the hit ratio measured
using simulation (Hitsimulation), as denoted in Equation
12. Relative error in estimated performance is measured
similarly. In addition, we measure the error of our model
in estimating NVM lifetime.

RelErrorHitRatio =

∣∣∣∣
Hitestimated −Hitsimulation

Hitsimulation

∣∣∣∣ (12)

Fig. 14 depicts the relative error of the proposed model
for estimating the hit ratio of various HMAs in a variety
of workloads. DRAM and NVM sizes are set relative to the
working set sizes of benchmarks. In most experiments, the
proposed analytical model estimates the main memory hit
ratio by less than 5% error. The average error is 4.61% while
the maximum error is 13.6%. Due to the simplifications we
employ in modeling its migration algorithm, TwoLRU has a
higher error rate compared to CLOCK-DWF, which also has
a more steady error rate across various memory sizes. Dedup
has a high average error rate in both HMAs, which is be-
cause it does not have an easy-to-model memory access dis-
tribution, unlike other programs in the PARSEC benchmark
suite. The abnormal behavior of the dedup benchmark also
results in high error in estimating PHitDRAM |hit as depicted
in Fig. 7. Comparing Fig. 7 and Fig. 14 shows that most of
the error in estimating PHitDRAM |hit is masked throughout
later calculations in our analytical model. Therefore, a more
accurate and computation-intensive method for estimating
PHitDRAM |hit will not significantly increase the accuracy of
our proposed model.

The error in estimating the hit ratio under different mem-
ory sizes does not follow a fixed pattern across workloads.
We observe increasing, decreasing, and stable error ratio
trends in Fig. 14 as we increase the memory size. Workloads
with a relatively steady access distribution, such as canneal,
maintain a stable error ratio across different memory sizes
in TwoLRU. Our analysis shows that workloads such as
raytrace and vips have anomalies in their access distribution,
which results in higher error with larger memory sizes.
Anomalies are less visible in CLOCK-DWF since it uses a
more deterministic algorithm compared to TwoLRU. An-

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU AMAT
CLOCK-DWF AMAT

TwoLRU Hit Ratio
CLOCK-DWF Hit Ratio

(a) blackscholes

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU AMAT
CLOCK-DWF AMAT

TwoLRU Hit Ratio
CLOCK-DWF Hit Ratio

(b) bodytrack

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU AMAT
CLOCK-DWF AMAT

TwoLRU Hit Ratio
CLOCK-DWF Hit Ratio

(c) canneal

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU AMAT
CLOCK-DWF AMAT

TwoLRU Hit Ratio
CLOCK-DWF Hit Ratio

(d) dedup

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

)

(e) facesim

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU AMAT
CLOCK-DWF AMT

TwoLRU Hit Ratio
CLOCK-DWF Hit Ratio

(f) ferret

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU AMAT
CLOCK-DWF AMAT

TwoLRU Hit Ratio
CLOCK-DWF Hit Ratio

(g) fluidanimate

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU AMAT
CLOCK-DWF AMAT

TwoLRU Hit Ratio
CLOCK-DWF Hit Ratio

(h) freqmine

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU AMAT
CLOCK-DWF AMAT

TwoLRU Hit Ratio
CLOCK-DWF Hit Ratio

(i) raytrace

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU AMAT
CLOCK-DWF AMAT

TwoLRU Hit Ratio
CLOCK-DWF Hit Ratio

(j) streamcluster

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU AMAT
CLOCK-DWF AMAT

TwoLRU Hit Ratio
CLOCK-DWF Hit Ratio

(k) vips

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU AMAT
CLOCK-DWF AMAT

TwoLRU Hit Ratio
CLOCK-DWF Hit Ratio

(l) x264

Fig. 14: Error of proposed model for AMAT and hit ratio compared to simulation, for various memory sizes. A-B values on
the x-axis denote DRAM and NVM sizes of A% and B% of the workload’s working set size, respectively.

12

other interesting pattern in the experiments is the effect of
the NVM/DRAM ratio on the hit ratio error. In streamcluster,
experiments with a 1:1 DRAM/NVM ratio have higher error
compared to a 1:2 ratio. This is due to the higher number of
migrations in 1:2 ratio experiments.

The main memory hit ratio cannot be used as the main
source for analyzing the performance of HMAs since HMAs
tend to have different performance behavior on NVMs with
different performance characteristics. To address this issue,
the proposed model reports the number of accesses to each
memory, which can be used to estimate the AMAT. The for-
mula for AMAT estimation is depicted in Equation 13. Rlatx
and Wlatx denote the read and write latencies for device
x, respectively. Table 1 describes the notation employed in
Equation 13. We extract the actual values for average DRAM
and NVM response times from [18] and show them in Table
6. Fig. 14 presents the relative error of the proposed model
in AMAT compared to the baseline simulation method, over
various benchmarks and memory sizes. The relative error in
AMAT, which is more meaningful for HMA designers than
the relative error in hit ratio, is lower than the average error
in hit ratio estimation in all experiments. This is due to the
effect of very long latency of disk subsystem accesses for
missed data pages on AMAT. The proposed model has only
2.99% average error in estimating performance of HMAs
while the highest error is 11.3%, in the vips program.6

AMAT = (13)
RlatD∗RD+WlatD∗WD+RlatN ∗RN +WlatN∗WN+Miss∗RlatDisk

of requests

TABLE 6: Latency of memory devices used in experiments
[18]

Device Latency r/w(ηs)

DRAM 50/50
NVM 100/350
Disk 5,000,000

To evaluate the accuracy of the proposed model in esti-
mating NVM lifetime, the number of write requests issued
to NVM is calculated using Equation 14. Pagefactor is the
number of writes required for migrating a page, which is set
to 64. MigtoNVM denotes the number of migrations from
DRAM to NVM. CLOCK-DWF does not issue write requests
directly to NVM and all writes in NVM are due to a) migra-
tions from DRAM to NVM and b) moving data pages from
disk to NVM. Therefore, evaluating the NVM lifetime in
CLOCK-DWF directly evaluates the accuracy of estimating
the number of migrations to NVM. Unlike CLOCK-DWF,
TwoLRU issues write requests to NVM. Since estimating
the number of write requests is relatively easier than esti-
mating migrations, our model is expected to have slightly
higher accuracy for TwoLRU compared to for CLOCK-
DWF. Fig. 15 depicts the accuracy results for both examined
HMAs. CLOCK-DWF does not follow a fixed pattern across
workloads and memory sizes. The spikes in error rates are
generally cases where the number of migrations is low. The
error in estimating the NVM lifetime in TwoLRU follows a
more stable pattern across different memory sizes compared
to estimating hit ratio and AMAT. Both HMAs have high
relative error rates in the Dedup benchmark, similar to the
relative error in hit ratio due to the unique characteristics of
this benchmark. The average error of estimating the NVM
lifetime is 2.93%, while the maximum error is 8.8%, which is
lower than the error in estimating hit ratio and AMAT.

6. Appendix B presents the absolute error values to estimate AMAT.

6.3 Model Execution Time

The proposed model consists of offline and online phases.
During the offline phase, all heavy computations for (r, u)
pairs, which we described in Section 3.1, are conducted. In
the online (runtime) phase, only frequency of occurrence of
pairs is computed to obtain the results. Thus, the online
phase does not have high complexity compared to simu-
lation, which requires simulating all requests. In simulation
methods, any modification in the trace file and/or the con-
figuration of the examined architecture requires a re-run of
the simulation, which is very time-consuming. The proposed
analytical model can reuse most of the required compu-
tations when such changes happen, thereby significantly
reducing the runtime per experiment. As a practical exam-
ple to show the required number of simulations, consider
running TwoLRU on 12 traces as conducted in the previous
work proposing this technique [18]. For each workload, at
least six combinations of thresholds need to be evaluated to
find the most suitable threshold value. Therefore, at least 72
simulations need to be run. If different NVM sizes (e.g., 10
different values) are also required, this number will increase
to more than 720 simulations. To calculate the reduction in
experimental evaluation time due to using our proposed an-
alytical model, we run each workload 50, 100, and 1000 times
with various DRAM/NVM sizes and HMA configurations.

Fig. 16 depicts the normalized execution time of the pro-
posed analytical model compared to simulation. The over-
head of offline calculations in the proposed model is amor-
tized over all experiments and is included in the execution
time of the proposed model. Since efficient data structures
are employed throughout simulations, and both HMAs have
almost equal simulation time, we normalize the simulation
time to the average execution time of both HMAs in Fig. 16.
According to this figure, the online phase execution time is
only 10% of the simulation time, on average. This shows that
the runtime complexity of our proposed analytical model is
much lower compared to simulation. The computations of
the online phase can also be easily parallelized, which would
further reduce the execution time of the online phase. We
leave this for future works. In workloads with larger num-
ber of requests, such as streamcluster, the proposed model
reduces the execution time by more than 10x over simulation
when we run more than 1000 experiments. Smaller work-
loads, such as blackscholes see smaller reduction in execution
time since their simulations are relatively fast. The highest
execution time reductions are seen in programs with long
simulation times, which are more challenging programs to
simulate to begin with.

Another advantage of our proposed model over sim-
ulation is that its computational complexity grows more
slowly with trace size. The runtime complexity, i.e., the
required computations to calculate the HMA hit ratio is
not proportional to the number of distinct data pages ac-
cessed throughout the trace file. Accessing thousands of
different data pages only increases the values of i and u in
the extracted (i,u) pairs from the trace files. For instance,
consider a trace file accessing 1,000 different data pages. The
profiler extracts X (i,u) pairs from the trace file, where the
runtime algorithm needs to solve each of them. By adding
Y accesses to the Z new distinct data pages to the trace
file, the number of extracted (i,u) pairs by the profiler does
not necessarily increase. Since adding an access to a new
data page in a sequence currently belonging to the (i,u)
pair only reduces the number of occurrences of the (i,u)
pair and also increases the number of occurrences of (i+1,
u+1) pair. There is, however, a small probability that the

13
Writes = WN +MigtoNV M ∗ Pagefactor (14)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5
1.01, 0.65 0.51

N
o

rm
a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Offline
Online

A
vg.

x264
vips

stream
cluster

raytrace

freqm
ine

fluidanim
ate

ferret

facesim

dedup

canneal

bodytrack

blackscholes

Fig. 16: Normalized execution time of the proposed model
compared to simulation for three numbers of experiments per
workload (from left to right 50, 100, and 1000)

(i+1, u+1) pair does not exist in the extracted pairs from
the original trace file. In this case, the runtime complexity
increases to compute the output of the (i+1, u+1) pair (from
computing X pairs to X+1 pairs). Note that the (i,u) pairs
where u is greater than the size of the main memory are
always a miss and hence, the number of possible (i,u) pairs
is limited. In practice, due to the locality of the accesses of
an application, the values of both i and u are rather small in
most of the extracted pairs. To show the effect of increasing
the trace size on the number of sequences and thus, on the
execution time of the proposed model, we split the trace
files and compute the number of required sequences for
10%, 25%, 50%, 75% and 100% of the trace files. As Fig.
17 shows, the number of sequences does not significantly
increase when trace size increases once the trace file length
is larger. Thus, the proposed analytical model has significant
advantage over simulation when using large trace files. We
conclude that the computational complexity of our proposed
analytical model is much lower than that of simulation.

6.4 Model Application
As mentioned before, the proposed analytical model enables
system architects to more easily identify the trade-offs and
weaknesses of different hybrid memory architectures. For
instance, the analytical model can provide a formula that
shows the correlation between the migration threshold used
in TwoLRU and the overall performance of the HMA. Us-
ing this data, we can predict the performance of TwoLRU
without running the proposed analytical model for various

 0.2

 0.4

 0.6

 0.8

 1

 1.2

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

raytrace

stream
cluster

vips
x264

N
o

rm
a

li
z
e

d
 #

 o
f

S
e

q
u

e
n

c
e

s

10% 25% 50% 75% 100%

Fig. 17: Normalized number of sequences observed for vari-
ous percentages of the trace file length

migration thresholds, which further reduces the execution
time of the proposed model. Fig. 18 shows the accuracy
of our model’s performance estimates when we use the
formula provided by our model. We generate the formula
using a migration threshold of one. We calculate performance
for other threshold values based on the formula, without
running the HMA through the proposed analytical model.
In most workloads, the relative error is less than 10%, which
shows the accuracy of the provided formula in estimating
the performance of TwoLRU. System architects can employ
such a formula to easily find a suitable migration threshold
for a vast range of workloads without the need for running
simulations or even running the proposed analytical model
for each possible migration threshold value.

 0
 2
 4
 6
 8

 10
 12
 14
 16

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

raytrace

stream
cluster

vips
x264

A
vg.

R
e

la
ti

v
e

 E
rr

o
r

(%
) 4

16
32

∞

Fig. 18: Relative error of performance estimation using the
formula provided by the proposed model compared to exe-
cuting the proposed model for each threshold value.

6.5 Model Overheads
Most of the required computations of the proposed model
can be performed offline and are reusable for any examined

 0

 2

 4

 6

 8

 10

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU CLOCK-DWF

(a) blackscholes

 0

 2

 4

 6

 8

 10

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU CLOCK-DWF

(b) bodytrack

 0

 2

 4

 6

 8

 10

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU CLOCK-DWF

(c) canneal

 0

 2

 4

 6

 8

 10

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU CLOCK-DWF

(d) dedup

 0

 2

 4

 6

 8

 10

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU CLOCK-DWF

(e) facesim

 0

 2

 4

 6

 8

 10

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU CLOCK-DWF

(f) ferret

 0

 2

 4

 6

 8

 10

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU CLOCK-DWF

(g) fluidanimate

 0

 2

 4

 6

 8

 10

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU CLOCK-DWF

(h) freqmine

 0

 2

 4

 6

 8

 10

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU CLOCK-DWF

(i) raytrace

 0

 2

 4

 6

 8

 10

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU CLOCK-DWF

(j) streamcluster

 0

 2

 4

 6

 8

 10

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU CLOCK-DWF

(k) vips

 0

 2

 4

 6

 8

 10

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

R
e
l
E

rr
o

r
(%

) TwoLRU CLOCK-DWF

(l) x264

Fig. 15: Error of proposed model for NVM lifetime compared to simulation method for various memory sizes. A-B values
on the x-axis denote DRAM and NVM sizes of A% and B% of the workload’s working set size, respectively.

14

hybrid memory architecture and/or trace file. The output
of such computations should be stored in persistent storage
for repeated use. To reduce the required storage space, the
generated formulas for Markov states are stored in gzip
format on a hard disk, which can be extracted when needed.
A current dataset of these formulas alongside their outputs
require less than 50GB of storage space, which can be either
loaded into the main memory before starting experiments
or loaded on-demand. The storage overhead is independent
of the memory size and trace size. We employ a dynamic
programming approach [70] in the proposed analytical model
to reduce the required computations. We use most of the
storage space for storing the intermediate computation re-
sults. The proposed model does not require all these data to
be fully loaded in the memory. The proposed model can still
operate without losing any accuracy with the cost of slightly
higher computation time, if we do not have a large enough
memory to hold all data.

7 CONCLUSION

Hybrid DRAM-NVM main memory architectures have been
proposed by system designers to exploit NVM benefits
while reducing the effect of their negative characteristics.
Designing an efficient hybrid memory architecture requires
an exploration of the design space of its architectural pa-
rameters, which is very time-consuming using traditional
simulation methods. This paper, for the first time, presents
an analytical model for hybrid memory architectures, which
significantly reduces the computation time for estimating
the performance and lifetime of hybrid memories. The pro-
posed model is based on Markov decision processes and
employs recursive state definitions. Our model is capable of
modeling various eviction and memory management poli-
cies and considers the interaction of memory modules when
migrating data pages. The proposed model is designed in
such a way that most of the calculations can be reused across
different trace files and/or HMAs. Our model can also pro-
vide a formula to evaluate the effect of different migration
thresholds on the overall HMA performance, which further
reduces the required computations for analyzing HMAs.
Our experimental results demonstrate that the proposed
model can accurately estimate the main memory hit ratio,
and NVM lifetime with an average error of only 4.61% and
2.93%, respectively, while reducing the computation time by
up to 90% over simulation based methods.

ACKNOWLEDGMENTS

This work has been partially supported by Iran National
Science Foundation (INSF) under grant number 96006071
and by ETH Zurich and donations from various industrial
partners, including Alibaba, Google, Huawei, HPDS, Intel,
Microsoft, and VMware.

REFERENCES

[1] O. Mutlu, “The RowHammer problem and other issues we may
face as memory becomes denser,” in Design, Automation Test in
Europe Conference Exhibition (DATE), March 2017, pp. 1116–1121.

[2] ——, “Memory scaling: A systems architecture perspective,” in 5th
IEEE International Memory Workshop (IMW), May 2013, pp. 21–25.

[3] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu,
and D. Burger, “Phase-change technology and the future of main
memory,” IEEE Micro, vol. 30, no. 1, pp. 143–143, Jan 2010.

[4] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase change
memory architecture and the quest for scalability,” Communications
of the ACM, vol. 53, no. 7, pp. 99–106, Jul. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1785414.1785441

[5] ——, “Architecting phase change memory as a scalable DRAM
alternative,” in International Symposium on Computer Architecture
(ISCA), 2009, pp. 2–13.

[6] M. Tarihi, H. Asadi, A. Haghdoost, M. Arjomand, and H. Sarbazi-
Azad, “A hybrid non-volatile cache design for solid-state drives
using comprehensive I/O characterization,” IEEE Transactions on
Computers (TC), vol. 65, no. 6, pp. 1678–1691, 2016.

[7] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu,
“Evaluating STT-RAM as an energy-efficient main memory alter-
native,” in IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), April 2013, pp. 256–267.

[8] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high
performance main memory system using phase-change memory
technology,” in International Symposium on Computer Architecture
(ISCA), 2009, pp. 24–33.

[9] E. Cheshmikhani, H. Farbeh, S. Miremadi, and H. Asadi, “TA-
LRW: A replacement policy for error rate reduction in STT-MRAM
caches,” IEEE Transactions on Computers (TC), in press, vol. PP,
no. PP, pp. 1–1, 2018.

[10] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in
hybrid memory systems,” in International Conference on Supercom-
puting (ICS), 2011, pp. 85–95.

[11] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan,
“Enabling efficient and scalable hybrid memories using fine-
granularity DRAM cache management,” IEEE Computer Architec-
ture Letters, vol. 11, no. 2, pp. 61–64, July 2012.

[12] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu, “Utility-
based hybrid memory management,” in IEEE International Confer-
ence on Cluster Computing (CLUSTER), Sept 2017, pp. 152–165.

[13] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee:
Bandwidth-efficient DRAM caching via software/hardware coop-
eration,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). ACM, 2017, pp. 1–14.

[14] C. Su, D. Roberts, E. A. León, K. W. Cameron, B. R. de Supinski,
G. H. Loh, and D. S. Nikolopoulos, “HpMC: An energy-aware
management system of multi-level memory architectures,” in Pro-
ceedings of the 2015 International Symposium on Memory Systems
(MEMSYS). ACM, 2015, pp. 167–178.

[15] H. Yoon, J. Meza, R. Ausavarungnirun, R. A. Harding, and
O. Mutlu, “Row buffer locality aware caching policies for hybrid
memories,” in IEEE 30th International Conference on Computer De-
sign (ICCD), Sept 2012, pp. 337–344.

[16] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: a hybrid PRAM
and DRAM main memory system,” in 46th Annual Design Automa-
tion Conference (DAC), 2009, pp. 664–469.

[17] S. Lee, H. Bahn, and S. Noh, “CLOCK-DWF: A write-history-aware
page replacement algorithm for hybrid PCM and DRAM memory
architectures,” IEEE Transactions on Computers (TC), vol. 63, no. 9,
pp. 2187–2200, 2013.

[18] R. Salkhordeh and H. Asadi, “An operating system level data
migration scheme in hybrid DRAM-NVM memory architecture,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
March 2016, pp. 936–941.

[19] M. Lee, D. H. Kang, J. Kim, and Y. I. Eom, “M-CLOCK: Migration-
optimized page replacement algorithm for hybrid DRAM and
PCM memory architecture,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing (SAC), 2015, pp. 2001–2006.

[20] C. Chen and J. An, “DRAM write-only-cache for improving life-
time of phase change memory,” in IEEE 59th International Midwest
Symposium on Circuits and Systems (MWSCAS). IEEE, 2016, pp.
1–4.

[21] L. Liu, H. Yang, Y. Li, M. Xie, L. Li, and C. Wu, “Memos: A full
hierarchy hybrid memory management framework,” in IEEE 34th
International Conference on Computer Design (ICCD), Oct 2016, pp.
368–371.

[22] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “Thynvm:
Enabling software-transparent crash consistency in persistent
memory systems,” in 48th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), Dec 2015, pp. 672–685.

[23] N. Agarwal and T. F. Wenisch, “Thermostat: Application-
transparent page management for two-tiered main memory,” in
Proceedings of the Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ser.
ASPLOS ’17. New York, NY, USA: ACM, 2017, pp. 631–644.
[Online]. Available: http://doi.acm.org/10.1145/3037697.3037706

[24] T. J. Ham, B. K. Chelepalli, N. Xue, and B. C. Lee, “Disintegrated
control for energy-efficient and heterogeneous memory systems,”
in IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), 2013, pp. 424–435.

[25] F. X. Lin and X. Liu, “Memif: Towards programming heteroge-
neous memory asynchronously,” in Proceedings of the Twenty-First
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’16). ACM, 2016, pp.
369–383.

15

[26] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski,
and G. H. Loh, “Heterogeneous memory architectures: A HW/SW
approach for mixing die-stacked and off-package memories,” in
IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), Feb 2015, pp. 126–136.

[27] M. Pavlovic, N. Puzovic, and A. Ramirez, “Data placement in HPC
architectures with heterogeneous off-chip memory,” in IEEE 31st
International Conference on Computer Design (ICCD), 2013, pp. 193–
200.

[28] A. J. Pea and P. Balaji, “Toward the efficient use of multiple
explicitly managed memory subsystems,” in IEEE International
Conference on Cluster Computing (CLUSTER), 2014, pp. 123–131.

[29] C. C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A two-
level memory organization with capacity of main memory and
flexibility of hardware-managed cache,” in 47th Annual IEEE/ACM
International Symposium on Microarchitecture, 2014, pp. 1–12.

[30] C. Chou, A. Jaleel, and M. K. Qureshi, “BEAR: Techniques for
mitigating bandwidth bloat in gigascale DRAM caches,” in 2015
ACM/IEEE 42nd Annual International Symposium on Computer Ar-
chitecture (ISCA), 2015, pp. 198–210.

[31] C. Huang and V. Nagarajan, “ATCache: Reducing dram cache la-
tency via a small SRAM tag cache,” in 23rd International Conference
on Parallel Architecture and Compilation Techniques (PACT), 2014, pp.
51–60.

[32] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison cache:
A scalable and effective die-stacked DRAM cache,” in 47th Annual
IEEE/ACM International Symposium on Microarchitecture, 2014, pp.
25–37.

[33] M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off
in architecting DRAM caches: Outperforming impractical SRAM-
tags with a simple and practical design,” in Proceedings of the 45th
Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2012, pp. 235–246.

[34] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim,
“Transparent hardware management of stacked DRAM as part of
memory,” in 47th Annual IEEE/ACM International Symposium on
Microarchitecture, 2014, pp. 13–24.

[35] F. Guo and Y. Solihin, “An analytical model for cache replacement
policy performance,” SIGMETRICS Performance Evaluation Review,
vol. 34, no. 1, pp. 228–239, Jun. 2006.

[36] X. Pan and B. Jonsson, “A modeling framework for reuse distance-
based estimation of cache performance,” in IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
March 2015, pp. 62–71.

[37] R. Manikantan, K. Rajan, and R. Govindarajan, “NUcache: An
efficient multicore cache organization based on next-use distance,”
in IEEE 17th International Symposium on High Performance Computer
Architecture, Feb 2011, pp. 243–253.

[38] H. Gomaa, G. G. Messier, C. Williamson, and R. Davies, “Estimat-
ing instantaneous cache hit ratio using Markov chain analysis,”
IEEE/ACM Transactions on Networking, vol. 21, no. 5, pp. 1472–1483,
Oct 2013.

[39] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-
thread cache contention on a chip multi-processor architecture,” in
Proceedings of the 11th International Symposium on High-Performance
Computer Architecture (HPCA). IEEE Computer Society, 2005, pp.
340–351.

[40] A. Dan and D. Towsley, “An approximate analysis of the LRU and
FIFO buffer replacement schemes,” SIGMETRICS Perform. Eval.
Rev., vol. 18, no. 1, pp. 143–152, Apr. 1990.

[41] B. B. Fraguela, R. Doallo, and E. L. Zapata, “Automatic analytical
modeling for the estimation of cache misses,” in International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
1999, pp. 221–231.

[42] X. Vera, N. Bermudo, J. Llosa, and A. González, “A fast and accu-
rate framework to analyze and optimize cache memory behavior,”
ACM Trans. Program. Lang. Syst., vol. 26, no. 2, pp. 263–300, Mar.
2004.

[43] G. L. Yuan and T. M. Aamodt, “A hybrid analytical DRAM
performance model,” in Proceedings of the 5th Workshop on Modeling,
Benchmarking and Simulation (MoBS), 2009.

[44] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan,
“ANATOMY: An analytical model of memory system perfor-
mance,” in The ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS). ACM, 2014, pp.
505–517.

[45] Y. Zhong, S. G. Dropsho, X. Shen, A. Studer, and C. Ding, “Miss
rate prediction across program inputs and cache configurations,”
IEEE Transactions on Computers (TC), vol. 56, no. 3, pp. 328–343,
March 2007.

[46] D. Eklov and E. Hagersten, “Statstack: Efficient modeling of LRU
caches,” in IEEE International Symposium on Performance Analysis of
Systems Software (ISPASS), March 2010, pp. 55–65.

[47] X. Vera and J. Xue, “Let’s study whole-program cache behaviour
analytically,” in Proceedings of the 8th International Symposium on

High-Performance Computer Architecture (HPCA). IEEE Computer
Society, 2002, pp. 175–.

[48] C. CaBcaval and D. A. Padua, “Estimating cache misses and
locality using stack distances,” in Proceedings of the 17th Annual
International Conference on Supercomputing, ser. ICS. New York,
NY, USA: ACM, 2003, pp. 150–159.

[49] J. M. Sabarimuthu and T. G. Venkatesh, “Analytical miss rate
calculation of L2 cache from the RD profile of L1 cache,” IEEE
Transactions on Computers (TC), vol. PP, no. 99, pp. 1–1, 2017.

[50] I. Kotera, R. Egawa, H. Takizawa, and H. Kobayashi, “Modeling
of cache access behavior based on Zipf’s law,” in Proceedings of
the 9th Workshop on MEmory Performance: DEaling with Applications,
Systems and Architecture, ser. MEDEA ’08. New York, NY, USA:
ACM, 2008, pp. 9–15.

[51] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE J.Sel. A. Com-
mun., vol. 20, no. 7, pp. 1305–1314, Sep. 2006.

[52] Y. Yang and J. Zhu, “Write skew and zipf distribution: Evidence
and implications,” ACM Transactions on Storage (TOS), vol. 12,
no. 4, pp. 21:1–21:19, Jun. 2016.

[53] R. Sen and D. A. Wood, “Reuse-based online models for caches,”
in Proceedings of the ACM SIGMETRICS/International Conference on
Measurement and Modeling of Computer Systems, ser. SIGMETRICS
’13. New York, NY, USA: ACM, 2013, pp. 279–292.

[54] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate
approximation for LRU cache performance,” in Proceedings of the
24th International Teletraffic Congress (ITC). International Teletraffic
Congress, 2012, pp. 8:1–8:8.

[55] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to
the performance analysis of caching systems,” ACM Transactions
on Modeling and Performance Evaluation of Computing Systems (TOM-
PECS), vol. 1, no. 3, pp. 12:1–12:28, May 2016.

[56] N. Beckmann and D. Sanchez, “Modeling cache performance be-
yond LRU,” in IEEE International Symposium on High Performance
Computer Architecture (HPCA), March 2016, pp. 225–236.

[57] M.-J. Wu, M. Zhao, and D. Yeung, “Studying multicore processor
scaling via reuse distance analysis,” SIGARCH Comput. Archit.
News, vol. 41, no. 3, pp. 499–510, Jun. 2013.

[58] R. K. V. Maeda, Q. Cai, J. Xu, Z. Wang, and Z. Tian, “Fast and
accurate exploration of multi-level caches using hierarchical reuse
distance,” in IEEE International Symposium on High Performance
Computer Architecture (HPCA), Feb 2017, pp. 145–156.

[59] B. Pourshirazi and Z. Zhu, “Refree: A refresh-free hybrid
DRAM/PCM main memory system,” in IEEE International Parallel
and Distributed Processing Symposium (IPDPS), May 2016, pp. 566–
575.

[60] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor,
and S. W. Keckler, “Page placement strategies for GPUs
within heterogeneous memory systems,” in Proceedings of
the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’15.
New York, NY, USA: ACM, 2015, pp. 607–618. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694381

[61] A. S. Tanenbaum, Modern operating system. Pearson Education,
Inc, 2009.

[62] Z. Sun, Z. Jia, X. Cai, Z. Zhang, and L. Ju, “AIMR: An adaptive
page management policy for hybrid memory architecture with
NVM and DRAM,” in IEEE 17th International Conference on High
Performance Computing and Communications (HPCC), Aug 2015, pp.
284–289.

[63] S. Ahmadian, O. Mutlu, and H. Asadi, “ECI-Cache: A high-
endurance and cost-efficient I/O caching scheme for virtualized
platforms,” in in Proceedings of the ACM International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS).
ACM, 2018.

[64] D. J. White, “A survey of applications of markov decision
processes,” Journal of the Operational Research Society, vol. 44,
no. 11, pp. 1073–1096, 1993. [Online]. Available: https://doi.org/
10.1057/jors.1993.181

[65] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of PCM-based main
memory with start-gap wear leveling,” in Proceedings of the Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2009, pp. 14–23.

[66] J. Liao, F. Zhang, L. Li, and G. Xiao, “Adaptive wear-leveling in
flash-based memory,” IEEE Computer Architecture Letters (CAL),
vol. 14, no. 1, pp. 1–4, Jan 2015.

[67] H.-S. Chang, Y.-H. Chang, P.-C. Hsiu, T.-W. Kuo, and H.-
P. Li, “Marching-based wear-leveling for PCM-based storage
systems,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 20, no. 2, pp. 25:1–25:22, Mar. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2699831

[68] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. disser-
tation, Princeton University, January 2011.

16

[69] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega,
“COTSon: infrastructure for full system simulation,” SIGOPS Op-
erating Systems Review, vol. 43, no. 1, pp. 52–61, 2009.

[70] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bert-
sekas, Dynamic programming and optimal control. Athena Scientific
Belmont, MA, 1995, vol. 1, no. 2.

Reza Salkhordeh received the B.Sc. degree in
computer engineering from Ferdowsi University
of Mashhad in 2011, and M.Sc. degree in com-
puter engineering from Sharif University of Tech-
nology (SUT) in 2013. He has been a mem-
ber of Data Storage, Networks, and Processing
(DSN) lab since 2011. He was also a member
of Iran National Elites Foundation from 2012 to
2015. He has been the director of Software di-
vision in HPDS corporation since 2015. He is
currently a Ph.D. candidate at SUT. His research
interests include operating systems, solid-state

drives, memory systems, and data storage systems.

Onur Mutlu is a Professor of Computer Science
at ETH Zurich. He is also a faculty member at
Carnegie Mellon University, where he previously
held the Strecker Early Career Professorship. His
current broader research interests are in com-
puter architecture, systems, hardware security,
and bioinformatics. A variety of techniques he,
along with his group and collaborators, has in-
vented over the years have influenced indus-
try and have been employed in commercial mi-
croprocessors and memory/storage systems. He
obtained his PhD and MS in ECE from the Uni-

versity of Texas at Austin and BS degrees in Computer Engineering and
Psychology from the University of Michigan, Ann Arbor. He started the
Computer Architecture Group at Microsoft Research (2006-2009), and
held various product and research positions at Intel Corporation, Ad-
vanced Micro Devices, VMware, and Google. He received the inaugural
IEEE Computer Society Young Computer Architect Award, the inaugural
Intel Early Career Faculty Award, US National Science Foundation CA-
REER Award, Carnegie Mellon University Ladd Research Award, faculty
partnership awards from various companies, and a healthy number
of best paper or ”Top Pick” paper recognitions at various computer
systems, architecture, and hardware security venues. He is an ACM
Fellow ”for contributions to computer architecture research, especially
in memory systems”, IEEE Fellow for ”contributions to computer archi-
tecture research and practice”, and an elected member of the Academy
of Europe (Academia Europaea). His computer architecture and digital
circuit design course lectures and materials are freely available on
YouTube, and his research group makes a wide variety of software and
hardware artifacts freely available online. For more information, please
see his webpage at https://people.inf.ethz.ch/omutlu/.

Hossein Asadi (M’08, SM’14) received his B.Sc.
and M.Sc. degrees in computer engineering from
the SUT, Tehran, Iran, in 2000 and 2002, respec-
tively, and his Ph.D. degree in electrical and com-
puter engineering from Northeastern University,
Boston, MA, USA, in 2007.

He was with EMC Corporation, Hopkinton,
MA, USA, as a Research Scientist and Senior
Hardware Engineer, from 2006 to 2009. From
2002 to 2003, he was a member of the Depend-
able Systems Laboratory, SUT, where he re-
searched hardware verification techniques. From

2001 to 2002, he was a member of the Sharif Rescue Robots Group.
He has been with the Department of Computer Engineering, SUT, since
2009, where he is currently a tenured Associate Professor. He is the
Founder and Director of the Data Storage, Networks, and Process-
ing (DSN) Laboratory, Director of Sharif High-Performance Computing
(HPC) Center, the Director of Sharif Information and Communications
Technology Center (ICTC), and the President of Sharif ICT Innovation
Center. He spent three months in the summer 2015 as a Visiting Profes-
sor at the School of Computer and Communication Sciences at the Ecole
Poly-technique Federele de Lausanne (EPFL). He is also the co-founder
of HPDS corp., designing and fabricating midrange and high-end data
storage systems. He has authored and co-authored more than eighty
technical papers in reputed journals and conference proceedings. His
current research interests include data storage systems and networks,
solid-state drives, operating system support for I/O and memory man-
agement, and reconfigurable and dependable computing.

Dr. Asadi was a recipient of the Technical Award for the Best Robot
Design from the International RoboCup Rescue Competition, organized
by AAAI and RoboCup, a recipient of Best Paper Award at the 15th CSI
International Symposium on Computer Architecture & Digital Systems
(CADS), the Distinguished Lecturer Award from SUT in 2010, the Dis-
tinguished Researcher Award and the Distinguished Research Institute
Award from SUT in 2016, and the Distinguished Technology Award from
SUT in 2017. He is also recipient of Extraordinary Ability in Science
visa from US Citizenship and Immigration Services in 2008. He has
also served as the publication chair of several national and international
conferences including CNDS2013, AISP2013, and CSSE2013 during
the past four years. Most recently, he has served as a Guest Editor of
IEEE Transactions on Computers, an Associate Editor of Microelectron-
ics Reliability, a Program Co-Chair of CADS2015, and the Program Chair
of CSI National Computer Conference (CSICC2017).

APPENDIX A
HMA ASSUMPTIONS
We present the assumptions we make about HMAs that can
be evaluated by our proposed analytical model. We first
present our definition of an HMA. Then, based on this def-
inition, we present the assumptions we made about HMAs
that enable us to accurately predict the HMA performance
and lifetime.

A.1 HMA Definition
An HMA can be defined by a tuple <mapping, Upd, Mig,
EvicP>: (a) mapping stores the required information for
managing memory (per data page), such as position in the
LRU queue or reference and dirty bits alongside the clock
handle position in the CLOCK algorithm. Two subsets of
mapping can also be present to depict data pages residing
in DRAM and NVM which are denoted as mapping.DRAM
and mapping.NVM, respectively. (b) For each access to the
memory subsystem, Upd(mapping, Page, NewMapping)7 func-
tion called, which reconfigures the internal placement of
data pages (setting ref bit in CLOCK and moving the data
page to the Most Recently Used (MRU) position in the LRU
queue). Upd function calls other functions to decide which
pages to replace in case of migration or free space shortage
in memory. (c) Any required movement of data pages be-
tween memories is governed by the Mig(mapping, MigPage)
function, which decides whether or not a data page should
be moved to another memory module. (d) In case of a miss
access, EvicP(mapping, Page, Prob) is called to calculate the

7. Parameters with overline are outputs.

17

eviction probability for data pages and deciding which data
page should be evicted from the memory.

A.2 Assumptions
The HMAs that can be evaluated by the proposed model
should have the following criteria:
• Data page eviction probabilities should be only dependent

on the corresponding information in mapping (Equation 15
below).

• Accessed data pages should have a static predefined map-
ping information , i.e., the first position of the queue in
LRU algorithm (denoted as Hit Mapping in Equation 16
below).

• mapping.NVM and mapping.DRAM should be totally or-
dered under less than or equal (≤) as denoted by Equation
17 below.

• A page can be migrated from NVM to DRAM (i.e., pro-
motion) only when it is accessed (Equation 18 below).

• Evicted data pages from DRAM should be moved to NVM
and as such, in the updated mapping (denoted as NM in
Equation 19 below), they should be treated similar to a hit
access in NVM (Equation 19 below).

• Evicted data pages from NVM are removed from memory
(Equation 20 below).

• Accessed data page will be assigned the highest position
in mapping (Equation 21 below).

APPENDIX B
ABSOLUTE ERROR VALUES
We report absolute error values for hit ratio and AMAT.
Relative errors for both hit ratio and AMAT are presented
in Section 6.2. The absolute error of AMAT for various
benchmarks is 7.14 ηs on average, reported in Fig. 19. The
maximum absolute error for estimating AMAT is for the vips
benchmark in CLOCK-DWF, which is 22.35 ηs. In bodytrack,
TwoLRU and CLOCK-DWF have almost the same relative
AMAT error as depicted in Fig. 14 while the absolute AMAT
error is almost twofold in CLOCK-DWF. This is due to the
difference in number of disk and memory accesses in the
two examined HMAs.

The average absolute hit ratio error is 5.31% and 2.48%
for TwoLRU and CLOCK-DWF, respectively as demon-
strated in Fig. 20. The dedup benchmark has highest absolute
hit ratio error (8.11% on average) in both examined HMAs,
which is due to anomalies in the access distribution of
this benchmark. Such anomalies also exist in estimating
AMAT and NVM lifetime of dedup benchmark. The highest
absolute hit ratio error (14.2%), however, belongs to facesim
for TwoLRU. CLOCK-DWF has a lower maximum hit ratio
error of 10.6%, which belongs to vips.

18

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s
)

TwoLRU CLOCK-DWF

(a) blackscholes

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s
)

TwoLRU CLOCK-DWF

(b) bodytrack

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s
)

TwoLRU CLOCK-DWF

(c) canneal

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s
)

(d) dedup

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s
)

(e) facesim

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s
)

TwoLRU CLOCK-DWF

(f) ferret

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s
)

TwoLRU CLOCK-DWF

(g) fluidanimate

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s
)

TwoLRU CLOCK-DWF

(h) freqmine

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s
)

TwoLRU CLOCK-DWF

(i) raytrace

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s
)

TwoLRU CLOCK-DWF

(j) streamcluster

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s
)

TwoLRU CLOCK-DWF

(k) vips

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s
)

TwoLRU CLOCK-DWF

(l) x264

Fig. 19: Absolute Response Time

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a
ti

o
 E

rr
o

r
(%

)

TwoLRU CLOCK-DWF

(a) blackscholes

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a
ti

o
 E

rr
o

r
(%

)

TwoLRU CLOCK-DWF

(b) bodytrack

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a
ti

o
 E

rr
o

r
(%

)

TwoLRU CLOCK-DWF

(c) canneal

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a
ti

o
 E

rr
o

r
(%

)

TwoLRU CLOCK-DWF

(d) dedup

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a
ti

o
 E

rr
o

r
(%

)

(e) facesim

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a
ti

o
 E

rr
o

r
(%

)

TwoLRU CLOCK-DWF

(f) ferret

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a
ti

o
 E

rr
o

r
(%

)

TwoLRU CLOCK-DWF

(g) fluidanimate

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a
ti

o
 E

rr
o

r
(%

)

TwoLRU CLOCK-DWF

(h) freqmine

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a
ti

o
 E

rr
o

r
(%

)

TwoLRU CLOCK-DWF

(i) raytrace

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a
ti

o
 E

rr
o

r
(%

)

TwoLRU CLOCK-DWF

(j) streamcluster

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a
ti

o
 E

rr
o

r
(%

)

TwoLRU CLOCK-DWF

(k) vips

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a
ti

o
 E

rr
o

r
(%

)

TwoLRU CLOCK-DWF

(l) x264

Fig. 20: Absolute Hit Ratio Values

EvicP (page) ∝ mapping[page]
∀p ∈ mapping : p 6= page⇒ evicP (page) ⊥ mapping[p] (15)

∀mapping,∀page : Upd(mapping, page, new mapping)

⇒new mapping[page] = Hit Mapping (16)

∀M ∈ {DRAM,NVM}, ∀P1, P2, P3 ∈ mapping.M :

(P1 ≤ P2 ∧ P2 ≤ P1⇒ P1 = P2) ∧ (P1 ≤ P2 ∧ P2 ≤ P3⇒
P1 ≤ P3) ∧ (P1 ≤ P2 ∨ P2 ≤ P1) (17)

Upd(mapping,page, new mapping) ∧mig(mapping,mig page)

⇒mig page = NULL ∨mig page = page (18)

P ∈ DRAM ∧ Upd(M,P2, NM) ∧ eviction victim = P2

⇒ NM [P] = Hit Mapping ∧ P ∈ NM.NVM (19)

P ∈ NVM ∧ Upd(M,P2, NM) ∧ eviction victim = P

⇒ P 6∈ NM (20)

∀M ∈ {DRAM,NVM}, ∀p ∈ mapping.M : p ≤ Hit Mapping
(21)

1

APPENDIX A
HMA ASSUMPTIONS

In this section, the assumptions on HMAs that can be
evaluated by the proposed analytical model are presented.
To accurately define the assumptions, a definition for HMAs
is presented first. Then based on this definition, the assump-
tions made for HMAs which enables us to accurately predict
their behavior are provided.

A.1 Hybrid memories definition

HMAs can be defined by a tuple denoted as <mapping,
Upd, Mig, EvicP> which is detailed as follows: (a) mapping
stores required information for managing memory (per data
page) such as position in LRU queue or reference and dirty
bits alongside clock handle position in the Clock algorithm.
Two subsets of mapping can also be presented to depict
data pages residing in DRAM and NVM which are denoted
as mapping.DRAM and mapping.NVM, respectively. (b) For
each access to the memory subsystem, Upd(mapping, Page,
NewMapping)1 function will be called which reconfigures
the internal placement of data pages (setting ref bit in
Clock and moving the data page to the Most Recently Used
(MRU) position in queue in LRU algorithm). Upd function
calls other functions to decide page replacements in case
of migrations or free space shortage in memory. (c) Any
required movement of data pages between memories are
governed by Mig(mapping, MigPage) function which decides
whether or not a data page should be moved to another
memory module. (d) In case of a miss access, EvicP(mapping,
Page, Prob) is called to calculate the eviction probability for
data pages and deciding the data page which should be
evicted from the memory.

A.2 Assumptions

The HMAs that can be evaluated by the proposed model
should have the following criteria based on the definition of
HMAs:

• Data page eviction probabilities should be only dependent
on the corresponding information in mapping (Equation 1).

• Accessed data pages should have a static predefined map-
ping information , i.e., the first position of queue in LRU
algorithm (denoted as Hit Mapping in Equation 2).

• mapping.NVM and mapping.DRAM should be totally or-
dered under less than or equal (≤) as denoted by Equation
3.

• A page can be migrated from NVM to DRAM (promotion)
only when it is accessed (Equation 4).

• Evicted data pages from DRAM should be moved to NVM
and as such, in the updated mapping (denoted as NM in
Equation 5), they should be treated similar to a hit access
in NVM (Equation 5).

• Evicted data pages from NVM are removed from memory
(Equation 6).

• Accessed data page will be assigned the highest position
in mapping (Equation 7).

1. Parameters with overline are outputs.

APPENDIX B
ABSOLUTE ERROR VALUES

Here, absolute error values for hit ratio and AMAT are
reported. Relative errors for both hit ratio and AMAT are
presented in Section 6.2.The absolute error of AMAT for
various benchmarks is 7.14 ηs on average which is reported
in Fig. 1. The maximum absolute error for estimating AMAT
belongs to vips benchmark in CLOCK-DWF which is 22.35
ηs. In bodytrack benchmark, TwoLRU and CLOCK-DWF
have almost the same relative AMAT error as depicted in
Fig. 14 while the absolute AMAT error is almost twofold
in CLOCK-DWF. This is due to the difference in number of
disks and memory accesses in two examined HMAs.

The average hit ratio error is 5.31% and 2.48% for
TwoLRU and CLOCK-DWF, respectively as demonstrated
in Fig. 2. The dedup benchmark has highest absolute hit ratio
error (8.11% on average) in both examined HMAs which
is due to the anomalies in the access distribution of this
benchmark. Such anomaly also exists in estimating AMAT
and NVM lifetime of dedup benchmark. The highest hit
ratio absolute error, however, belongs to facesim benchmark
in TwoLRU which is 14.2%. CLOCK-DWF has a lower
maximum hit ratio error of 10.6% which belongs to vips
benchmark.

ar
X

iv
:1

90
3.

10
06

7v
1

 [
cs

.A
R

]
 2

4
M

ar
 2

01
9

2

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s

)

TwoLRU CLOCK-DWF

(a) blackscholes

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s

)

TwoLRU CLOCK-DWF

(b) bodytrack

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s

)

TwoLRU CLOCK-DWF

(c) canneal

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s

)

(d) dedup

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s

)

(e) facesim

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s

)

TwoLRU CLOCK-DWF

(f) ferret

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s

)

TwoLRU CLOCK-DWF

(g) fluidanimate

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s

)

TwoLRU CLOCK-DWF

(h) freqmine

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s

)

TwoLRU CLOCK-DWF

(i) raytrace

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s

)
TwoLRU CLOCK-DWF

(j) streamcluster

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s

)

TwoLRU CLOCK-DWF

(k) vips

 0

 5

 10

 15

 20

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

A
M

A
T

 E
rr

o
r

(η
s

)

TwoLRU CLOCK-DWF

(l) x264

Fig. 1: Absolute Response Time

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a

ti
o

 E
rr

o
r

(%
)

TwoLRU CLOCK-DWF

(a) blackscholes

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a

ti
o

 E
rr

o
r

(%
)

TwoLRU CLOCK-DWF

(b) bodytrack

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a

ti
o

 E
rr

o
r

(%
)

TwoLRU CLOCK-DWF

(c) canneal

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a

ti
o

 E
rr

o
r

(%
)

TwoLRU CLOCK-DWF

(d) dedup

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a

ti
o

 E
rr

o
r

(%
)

(e) facesim

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a

ti
o

 E
rr

o
r

(%
)

TwoLRU CLOCK-DWF

(f) ferret

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a

ti
o

 E
rr

o
r

(%
)

TwoLRU CLOCK-DWF

(g) fluidanimate

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a

ti
o

 E
rr

o
r

(%
)

TwoLRU CLOCK-DWF

(h) freqmine

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a

ti
o

 E
rr

o
r

(%
)

TwoLRU CLOCK-DWF

(i) raytrace

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a

ti
o

 E
rr

o
r

(%
)

TwoLRU CLOCK-DWF

(j) streamcluster

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a

ti
o

 E
rr

o
r

(%
)

TwoLRU CLOCK-DWF

(k) vips

 0
 2
 4
 6
 8

 10
 12
 14

1-5
1-10

2-5
2-10

5-5
5-10

10-5
10-10

A
vg.

H
it

 R
a

ti
o

 E
rr

o
r

(%
)

TwoLRU CLOCK-DWF

(l) x264

Fig. 2: Absolute Hit Ratio Values

EvicP (page) ∝ mapping[page]

∀p ∈ mapping : p 6= page⇒ evicP (page) ⊥ mapping[p] (1)

∀mapping,∀page : Upd(mapping, page, new mapping)

⇒new mapping[page] = Hit Mapping (2)

∀M ∈ {DRAM,NVM}, ∀P1, P2, P3 ∈ mapping.M :

(P1 ≤ P2 ∧ P2 ≤ P1⇒ P1 = P2) ∧ (P1 ≤ P2 ∧ P2 ≤ P3⇒
P1 ≤ P3) ∧ (P1 ≤ P2 ∨ P2 ≤ P1) (3)

Upd(mapping,page, new mapping) ∧mig(mapping,mig page)

⇒mig page = NULL ∨mig page = page (4)

P ∈ DRAM ∧ Upd(M,P2, NM) ∧ eviction victim = P2

⇒ NM [P] = Hit Mapping ∧ P ∈ NM.NVM (5)

P ∈ NVM ∧ Upd(M,P2, NM) ∧ eviction victim = P

⇒ P 6∈ NM (6)

∀M ∈ {DRAM,NVM}, ∀p ∈ mapping.M : p ≤ Hit Mapping (7)

