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ABSTRACT

The volume of data that is processed and produced by modern data-
intensive applications is constantly increasing. Of course, along
with the volume, the interest in analyzing and interpreting this data
increases as well. As a consequence, more and more DBMSs and
processing frameworks are specialized towards the efficient execu-
tion of long-running, read-only analytical queries. Unfortunately,
to enable analysis, the data first has to be moved from the source
application to the analytics tool via a lengthy ETL process, which
increases the runtime and complexity of the analysis pipeline.

In this work, we advocate to simply skip ETL altogether. With
AnyOLAP, we can perform online analysis of data directly within
the source application and while it is running. In the proposed
demonstration, the audience will get the chance to put AnyOLAP
to the test on a set of data-intensive applications that are supposed
to be analyzed while they are up and running. As the entire analysis
pipeline of AnyOLAP will be exposed to the audience in form of
live and interactive visualizations, users will be able to experience
the benefits of true online analysis firsthand.
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1 INTRODUCTION

Modern data-intensive applications process and produce more and
more data. They perform complex, often incremental computations
on large input datasets, potentially modify them, and produce corre-
spondingly large results. Of course, the produced data is supposed
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to be analyzed afterwards, which is often carried out in an analyt-
ical DBMS [8, 16, 18] or analytics framework [6, 7, 17]. However,
before this analysis can happen, a cumbersome ETL process must be
carried out, which consists of the following three steps: (1) Extract:
The application materializes the results externally, e.g. in form of
a CSV file. (2) Transform: The results are potentially transformed
so that they are ready to be loaded into the analytics system, e.g.
by reformatting all dates. (3) Load: The content of the CSV file is
loaded into the proprietary database of the system. After this ETL
process, the results are finally ready to be analyzed and interpreted
by running a corresponding query in the system.

A step in the right direction is in-situ query processing [5, 13],
which directly operates on raw text files. However we believe that
even extraction can be eliminated from the pipeline. Instead of
extracting the data from the application, it should be directly avail-
able for analysis within the application. Only this approach allows
true online analytical processing, which is happening side-by-side
with the running application. This is exactly the approach taken
by AnyOLAP, which drastically simplifies the analysis pipeline as
shown in Figure 1.
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Figure 1: A typical analysis pipeline including an ETL process
(top) vs our AnyOLAP pipeline without ETL (bottom).

But how can we access, analyze, and interpret the internal data of
an application during its runtime? One option would be to modify
the application such that it exposes its data in a shared memory
space. This shared data could then be analyzed by an external
system. Unfortunately, such a modification typically imposes deep
and complex changes in the memory management of the application.
Moreover, each and every application to analyze would require
manual and careful adaptation for shared memory.
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In AnyOLAP, we follow a minimally invasive approach: Instead
of modifying the application that we want to analyze, we attach
AnyOLAP to it in order to gain access to its internal memory. The
key to do so lies in so-called function interposing, which is available
in different variants for Linux [1], Mac OSX [2], and Windows [3] -
here, we focus on the implementation in Linux. Interposing allows
AnyOLAP to intercept allocation requests and get a handle for the
virtual and physical memory that is in use by the application. Using
this handle, AnyOLAP can take virtual snapshots of the memory
regions of interest. AnyOLAP assures that these virtual snapshots
remain consistent and are not affected by the concurrent execution
of the host application. These virtual snapshots can then be trans-
formed and interpreted by user-written analytical tasks. To ease
usage and interpretation, AnyOLAP provides a GUI, which visual-
izes intercepted memory regions and the corresponding analysis
process in a live and interactive fashion.

2 ANY OLAP

To enable analytics in a minimally invasive fashion, AnyOLAP
utilizes a combination of rather exotic techniques, which we will
describe at a high level in the following section.

Function interposing [1-3] forms the basis of AnyOLAP. In gen-
eral, it works as follows: If an application calls a function from a
dynamic library, the definition of the function is resolved during
runtime. For example, if an application calls mmap(), the call is re-
solved at runtime by the definition of mmap() in the GNU C Library.
The idea of function interposing is to preload a library containing
an alternative definition of mmap(). As a consequence, the call is
resolved by the alternative definition instead of the default one. In
AnyOLAP, interposing has one essential purpose: To get a handle
on the virtual and physical memory of the application. Precisely,
we hijack mmap(), mremap(), and munmap(), as these are typically
called by general-purpose allocators, such as malloc(), to allocate,
resize, and free large virtual memory regions. Of course, AnyOLAP
can be extended to hijack further calls if required, as long as the
called functions are linked dynamically. The goal of this approach
is to install a custom memory manager in the application, which
enables us to take virtual snapshots.

A call to mmap() returns a newly allocated virtual memory re-
gion. By default, this virtual memory region is backed by anonymous
physical memory. Anonymous means that the user cannot get a
handle on it — it is transparently managed by the OS. This is a
problem: To create efficient virtual snapshots [10, 11, 15], where
physical memory is shared between the virtual memory of the ap-
plication and the corresponding virtual snapshot, we need to get a
handle for the physical memory first. To get this handle, we provide
the following alternative definition of mmap(): Instead of return-
ing a virtual memory area that is backed by anonymous physical
memory, we return a virtual memory area that is backed by a so
called main-memory file f. The pages of a main-memory file are
again mapped to anonymous physical pages by the OS. As we can
freely map virtual pages to file pages [14], this main-memory file
is effectively our handle to the physical memory of the application.

2.1 Virtual Snapshotting

With the physical memory at hand, we are now able to create
lightweight virtual snapshots: Assume we have a virtual memory
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region w of four virtual pages wy to w3 that are mapped to the
four file pages fj to f3. If we now take a virtual snapshot s with
respect to w, then s to s3 will map to the same four file pages fp to
f3. Thus, w and s share their physical memory. Figure 2 visualizes
the situation right after s has been taken.
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Figure 2: AnyOLAP takes a virtual snapshot s with respect
to w. Both s and w map to the same file pages.

Of course, s should provide a consistent view for analysis while
the application is writing to w. To realize this behavior, we imple-
ment a manual copy-on-write (CoW) mechanism, as described in
detail in [14]. When creating the virtual snapshot s with respect
to w, we set the memory protection of w to read-only. Thus, when
the application intends to write to a virtual page, a segmentation
fault is triggered. By default, this would terminate the application.
However, AnyOLAP installs a custom segmentation fault handler
that catches the fault. Then, we perform a manual CoW, which du-
plicates the physical page and adjusts the mapping as visualized in
Figure 3. As a consequence, no write to w will be visible through s.
Of course, the same holds in the other direction as well: A write to
s, i.e., to transform the data of the snapshot, will not be visible in
the host application.

Figure 3: A write to w; triggers a manual CoW, where w;
is remapped to an unused file page fs, before the write is
performed. As the corresponding page s1 in the snapshot
still maps to file page f1, the snapshot remains consistent.

In summary, being able to create virtual snapshots offers two essen-
tial advantages over classical extraction: (1) Creating a snapshot is
lightweight as only a memory mapping needs to be initialized [14].
(2) Only pages that are modified by the host application are actually
copied.









