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Abstract
The Flash Translation Layer (FTL) plays a crucial role
for the performance and lifetime of SSDs. It has been
difficult to evaluate different FTL strategies in real SSDs
in the past, as the FTL has been deeply embedded into
the SSD hardware. Recent host-based FTL architectures
like ZNS now enable researchers to implement and
evaluate new FTL strategies. In this paper, we evaluate
the overhead of various garbage collection strategies
using a host-side FTL, and show their performance
limitations when scaling the SSD size or the number
of outstanding requests. To address these limitations,
we propose constant cost-benefit policy, which removes
the scalability limitations of previous policies and can
be efficiently deployed on host-based architectures. The
experimental results show that our proposed policy
significantly reduces the CPU overhead while having
a comparable write amplification compared to the best
previous policies.

Index Terms—SSD, FTL, Garbage collection, ZNS

I. Introduction

SSDs have replaced magnetic disks in many
applications areas, as they provide high IOPS per
cost at a low power consumption [1], [2]. Vendors
have been able to scale the capacity of SSDs to tens of
TBs of storage at a performance above a million read
IOPS. Internally, an SSD stores its data inside a set of
flash cells placed within a flash block. Each flash block
should be written sequentially, has to be erased before
being rewritten, and only has a limited endurance.

SSDs implement a Flash Translation Layer (FTL)
that manages these requirements and exposes a
conventional random access block-interface to the host.
The FTL transforms incoming random writes into a log-
structured write pattern. As part of the process, the FTL
has to employ a garbage collection (GC) strategy to free

up blocks for new writes. Each garbage collection cycle
first selects a victim block, copies valid data from the
victim block to a new write block, and then erases the
block. The ratio of total writes (by GC and user) to
the user writes is called the Write Amplification Factor
(WAF) [3]. A perfect SSD with no GC overhead has a
WAF equal to 1, whereas common workloads exhibit
WAFs of 2–4 [4]. The required processing power and
memory capacity within the FTL have to scale for
all known GC strategies with the performance and the
capacity of the SSD [5].

A new type of SSDs, called Zoned Namespace (ZNS)
SSDs [6], [7], enables the partitioning of responsibilities
between the host and the SSD through the ZNS storage
interface [8]. The interface defines a zoned storage
model for SSDs, in which a set of zones is exposed.
Similar to the characteristics of the flash media, the
zones must be written sequentially and reset to be
rewritten. This change allows a ZNS SSD to directly
map host writes to its flash media, which eliminates the
overhead of the conventional GC process in the SSD
and also the internal WAF overhead. The ZNS SSD
still maintains the responsibility of managing media
reliability and durability within the SSD.

This paper studies the impact of transitioning the
responsibility of fine-grained data placement within
flash blocks to the host and its impact on host-side
FTLs [9], [10] with respect to the garbage collection
policies. Previous GC policies have been implemented
either in simulators [11], [12], [13] or custom-built
SSDs [14], [15], [16], since commercial FTLs have been
deeply embedded inside SSDs and cannot be changed
by third parties. The actual overheads of GC policies in
real-world enterprise SSDs have been rarely exposed.
We, for the first time, evaluate the overhead of GC
policies for ZNS SSDs. Our evaluation reveals that
the existing GC policies suffer from high processing
or memory overheads if the size or the performance
of SSDs are scaled. Existing GC strategies therefore
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cannot provide the required performance for future
enterprise applications. ZNS SSDs provide the ability
to utilize the existing GC algorithms within file-systems
or applications [6], avoiding the SSDs GC overhead
that amplifies host-side GC. However, when considering
host-side FTLs, that expose a conventional random
write interface on top of ZNS SSDs, the overheads of
existing GC policies continue to exist due to having
to perform victim selection and maintaining in-memory
data structures. We show that selecting the victim block
itself does not have to be the performance bottleneck
of GC policies in large and high-performance SSDs.
Instead, the maintenance cost of the data structures,
which requires updating per I/O, is significantly higher
than that of the victim selection.

Based on our observations, we propose a constant-
time GC policy, called constant cost-benefit (CCB), on
top of the cost-benefit (CB) strategy [15]. It provides
identical WA compared to CB, while having constant
maintenance overhead when scaling SSDs in both size
and performance. CCB maintains several linked-lists
and places blocks, based on their number of invalid
pages, in different linked-lists. For each I/O, CCB
removes an item from a linked-list and adds it to
the tail of another linked-list, both in constant time.
Selecting the victim is also performed in constant time
by comparing the heads of all lists.

Our experimental results show that our proposed GC
policy offers up to 74% less CPU overhead, compared
to the best competing strategy.

The main contributions of this paper are as follows:
• For the first time, we have measured the

performance and scalability of GC policies
applicable to ZNS SSDs.

• We quantify the performance overhead of different
parts of GC policies and show that per I/O
overhead can be significantly higher than that of
the victim selection.

• We propose CCB GC policy, which has constant
time overhead concerning SSD size, similar to the
greedy policy, while maintaining WA efficiency of
state-of-the-art policies.

The paper is structured as follows: Section II presents
the background and motivation of this paper. Section III
presents our data structure as well as our modified
selection policy. Section IV describes the evaluation
environment and presents the results. Finally, Section V
concludes the paper.

II. Background and motivation

This section first explains the background of flash
memory and ZNS SSD internal architecture. Afterward,

we present various garbage collection policies and their
shortcomings, which motivate this paper.

A. Flash Memory and SSDs

Flash memory cells employed in SSDs have many
unique characteristics. Flash cells, e.g., cannot be
overwritten, unless being erased first. Flash memory is
therefore partitioned into pages (set of flash cells) and
blocks, where pages are the unit of reads and writes,
while blocks are the unit of erase operations. Each block
typically contains many hundred or even thousands of
pages. In terms of performance, the write latency of
pages is several times higher than their read latency,
while the erase latency of a block is even higher than
its write latency.

Providing a block interface for SSDs which behaves
semantically similar to a magnetic disk requires a flash
translation layer (FTL). SSDs employ a log-based
approach to write data pages sequentially, while the
FTL manages the mapping between logical and physical
addresses. When the FTL runs short on available free
blocks, it transparently selects a block for erasing, based
on the GC policy. It then moves valid pages inside the
victim block to another block and erases them. Moving
pages between blocks means that the page is re-written,
and hence, a user write will result in more than one
physical write on the SSD.

Flash cells also have a limited endurance, which is
determined by the number of times they can be erased.
The GC overhead therefore shortens the lifetime of
SSDs and GC policies try to minimize the number of
moved pages, which is equivalent to minimizing the
number of erase cycles. To measure the efficiency of
GC policies, the write amplification factor metric is
employed, which is the ratio of physical writes in the
SSD to the actual user writes.

To expand the SSD’s lifetime, the FTL performs
wear-leveling of flash blocks, such that blocks are worn
out with a similar pace by selecting blocks with the
lower erase counts. GC and wear-leveling policies can
be considered orthogonal to each other [17], [5].

B. Zoned Namespace SSDs

Contrary to current SSDs, ZNS SSDs transition the
responsibility of fine-grained data placement within
flash blocks to the host, but continue to manage the
media durability and reliability, including wear-leveling,
internally. The ZNS interface exposes zones, that must
be written sequentially and reset if rewritten, aligning to
the flash media characteristics. Each zone maintains a
write pointer, which defines the next logical block to be
written in the zone. Data can be only written to a zone
at the address of the write pointer, which is incremented
after each write (see Fig. 1).
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Fig. 1: ZNS SSD architecture [6]

If the host software requires a random write interface
to be used, the host may implement a host-side
translation layer. This layer, similarly to the FTL of
conventional SSDs, has to implement a translation table,
the GC process, associated memory, and computation.
We use the new ZNS SSD interface to focus on the GC
algorithms used to expose a random write block storage
interface and evaluate its overheads.

C. Victim selection strategies

The greedy policy [18] is one of the oldest and
simplest GC policies for SSDs. It selects the block with
the lowest number of valid pages to reduce the WAF.
Although it can achieve an optimal WAF for uniformly
random accesses [19], it has high WAF when running
real-world applications. Greedy can be implemented
with fairly small processing and memory overhead. It
has O(SB) complexity when selecting the victim data
block, while having O(1) complexity in maintaining
its data structures. Table I denotes the notations used
throughout the paper. LINK-GC [14] adds preemption
to greedy to reduce the long IO latencies imposed by
the GC process. Stable greedy [11] further optimizes
baseline greedy to not select blocks containing hot
pages. It employs the time since last block modification
as the hotness metric.

Notation Description
SB Pages per block/zone
Bt Last modification time of block
NB Number of blocks
UB Block utilization
EraseB Block erase count
Binval Number of invalid pages in a block
Bvalid Number of valid pages in a block

TABLE I: Description of notations

One of the shortcomings of the greedy policy is its
lack of providing wear-leveling. Blocks containing cold
pages will have a low number of invalid pages, and
hence, will not be selected for garbage collection. The

cost-benefit (CB) policy tries to address this problem by
adding a timing factor to the cost function. It considers
the time since the last modification of the block (writing
or invalidating a page) as an additional factor to the
number of invalid pages. Moreover, it takes the cost
of moving valid pages into account. Equation 1 shows
how CB calculates the benefit of selecting a block for
garbage collection.

bene f itCB = (tnow−Bt) ·
Binval

2 ·Bvalid
(1)

To move valid pages, we need to read them from the
victim block and write them to another block. Therefore,
two times the number of valid pages is considered
as the cost of erasing a block. The time since the
last modification of cold blocks increases over time
and eventually, a cold block will have a high enough
benefit value to be selected for erasure. It allows CB
to reuse invalid pages in blocks containing mostly cold
valid pages. The benefit value depends on the current
time. It increases with varied pace for different blocks.
Therefore, during GC the benefit value for all blocks
needs to be calculated. Having O(NB) complexity within
a standard implementation for selecting the GC victim
makes CB policy not scalable in terms of SSD size.
CB does not maintain any separate data structure and
only needs to update a few values in the block data
structure. ParaFS [20] uses greedy and CB internally,
based on if GC is triggered by the lack of free blocks or
the file system being idle. Although ParaFS can reduce
the GC overhead during burst I/O accesses, the WAF
increases in such cases because of using greedy. It will
result in more writes by the GC, which decreases both
performance and lifetime of the SSD.

Fast CB [5] identified the huge overhead of CB
victim selection. To address it, Fast CB separates blocks
into two classes. It selects the victim block from the
class containing few blocks with the highest cost-benefit
values. Therefore, the victim selection time is limited
to a small number of blocks. It, however, imposes CPU
overhead for maintaining the classes and reduces the
accuracy of CB. Appr-CB [5] is another approximation
for CB, which selects many blocks for erasure in each
meta-iteration. Therefore, it does not need to scan
blocks until the selected blocks from the previous scan
are erased. It reduces the victim selection overhead of
CB by a constant factor. Note that this will also reduce
the accuracy of CB. The accuracy loss depends on the
number of selected blocks in the meta-iteration and the
workload characteristics. Therefore, a pre-defined value
for the number of selected blocks might not be optimal
for all workloads.

The cost-age-times (CAT) [16] policy adds the
number of erases to the benefit function to give higher



priority to blocks with low erase count. It also employs
a pseudo-log function of time to limit its effect on
the benefit function. Menon et al. [13] suggested a
different approach that prioritizes older blocks over
mostly invalid blocks. It selects the block with the
highest number of invalid pages from blocks having an
age older than a predefined threshold.

To further increase the accuracy of the age detection
mechanism, the FeGC [12] policy suggests per page
aging calculation. The age of a page is determined
by the time since its invalidation. FeGC employs the
sum of the age of all invalid pages in a block as the
scoring function to select a victim block. Similar to
CB, the score function of FeGC also depends on the
garbage collection time. Therefore, the scores need to
be calculated at the time of the garbage collection. To
reduce this overhead, the authors suggested employing
several heaps for managing the blocks. They placed
blocks based on their number of invalid pages into
different heaps. The pace of increasing the score for
blocks with the same number of invalid pages is the
same, and hence, the ordering between them does not
change over time. When a page is invalidated, it is
removed from its heap and placed into the next heap.

To select the victim block, only the heads of heaps
need to be compared. Since the number of heaps
is equal to the number of pages in a block, the
victim selection time of FeGC has the same order of
complexity as greedy (O(SB)). However, the cost of
maintaining the data structures is higher in FeGC, since
greedy needs a constant time for moving a block to
the next list, while FeGC needs O(log(NB)). FeGC
relies on storing per-page metadata on the SSD and
needs to retrieve it for new writes to pages. While the
overhead of this method might not be significant in
traditional SSDs, it imposes a significant overhead in
ZNS SSDs. Each page write requires sending a request
from the OS to the SSD to read the metadata, which
cannot be done concurrently with the actual page write.
Therefore, each page write will have an additional read
request overhead. FaGC+ [21] employs incremental
write numbers instead of the time as the age, since the
GC policy is not sensitive to the real time. However, the
old write number still needs to be retrieved, by a read
request, before writing a page.

D. Motivation

In this section, we discuss the limitations of existing
GC policies for upcoming ZNS SSDs in terms of
CPU and memory overheads while scaling the size
and performance of SSDs and considering a host-side
translation layer that exposes a conventional random
write block interface.

1) Memory overhead: Implementing a random write
block interface on the host inhibits similar overheads
to existing SSD FTLs. Due to the fine-grained data
placement, that requires data to be written sequentially
within a zone, the host must maintain a mapping table
where its memory overheads are imposed on the system
memory. A server usually manages tens of SSDs at the
same time. Hence, having a high memory overhead is
not acceptable for host FTLs. GC policies like greedy
and CB only require a fixed number of variables per
block. FeGC requires two sets of data structures in
addition to the same number of added variables to block
data structure as CB. First, it requires several variables
per-page to identify hot/cold pages. Second, it needs
several heaps to maintain the sorted lists of blocks.
Maintaining per-page data structures is not feasible in
large SSDs. For instance, keeping only a 4 byte variable
per page will result in 1 GB memory overhead per 1
TB of SSD. FeGC and other GC policies like FaGC+
try to overcome this problem by storing per-page data
structures within the flash page’s metadata section.

The block interface does provide the ability to pass
this metadata through per-LBA metadata, but is not
commonly available. When not available, the metadata
exhibits extra write/read requests in addition to the
actual data. Therefore, the hot/cold identification of
such GC policies cannot be employed generally and
we consider them without this functionality. Even when
the interface is available, the metadata stored with the
previous version of the page needs to be retrieved,
updated, and then written with the new version of
the page. Therefore, still, a read I/O needs to be
performed. FaGC+ relies on per-page information for
victim selection, and hence, it cannot be practically used
in ZNS SSDs.

The second memory overhead of FeGC comes from
maintaining several heaps. The number of heaps is equal
to the number of pages in a block. In ZNS SSDs
with large zones, FeGC needs thousands of heaps. The
maximum size of heaps is equal to the number of
zones. Hence, we cannot pre-allocate all heaps with
their maximum size. Dynamically increasing/decreasing
the size of heaps in the runtime still imposes overheads,
since one cannot perform too many heap expand/shrink
without significant performance overhead.

In summary, Greedy and CB have ~0.0007%
memory overhead, compared to the storage capacity
for 1MByte zones. Appr-CB imposes ~0.0014%
memory overhead. FeGC and FaGC+ have ~0.101%
and ~0.1007% overhead, respectively. FeGC without
hot/cold identification, however, imposes ~0.001%
memory overhead.

2) CPU overhead: A host-side FTL acts as a middle-
layer between applications and SSD, and impacts
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Fig. 2: CPU overhead

the host CPU utilization when processing I/Os. As
mentioned before, many SSDs can be connected to
a server, which all need their own FTL. If the FTL
consumes too much processing power, the CPU will
become a performance bottleneck when servicing I/O
requests. GC policies have two types of overhead:
processing overheads for maintaining data structures
and for selecting the victim block. Previous studies
focused on minimizing the overhead of selecting victim
blocks by imposing higher maintenance overhead.

Fig. 2 shows the CPU overhead of various GC
policies managing a 2TB SSD performing 200K IOPS
(see Section IV-A for experimental setup). CB requires
examining all blocks, and hence, it is not possible to
employ it in this setup. Fast CB reduces the CPU
overhead of CB by 27%. However, it still needs to
perform complex operations on its data structures, and
therefore, still has a significant CPU overhead. Greedy
has the lowest CPU overhead for both processing and
victim selection because of its simple architecture. Both
FeGC and FaGC+ impose a high CPU overhead, which
is mostly because of their processing overhead. Appr-
CB, on the other hand, has a high victim selection
overhead, since it only reduces the CB victim selection
time by a constant factor.

We can conclude that current GC policies suffer either
from 1) high memory overheads like FeGC with wear-
leveling and FaGC+ or 2) high CPU processing like CB
and FeGC without wear-leveling. Therefore, there is a
need for a GC policy which provides a suitable WAF,
while having a processing and victim selection overhead
similar to that of greedy.

III. Optimizing cost-benefit

CB has shown to be able to reduce the WAF for many
real-world traces compared to the greedy strategy, while
there have been only a few attempts to reduce its
significantly high victim selection overhead [5]. They,

however, do not entirely eliminate it and can also
affect the WAF. This section presents our new strategy
constant cost-benefit (CCB), which uses ordered lists
for organizing blocks. It accelerates the victim selection
process by limiting it to a small fraction of relevant
blocks. As a preliminary step, we first emphasize two
properties of the cost-benefit strategy, which must be
preserved by ordered lists to maintain cost-benefit’s
selection quality. We then show that cost-benefit can
select a victim block by simply comparing the heads of
all lists, and that ordered lists inflict only constant run
time maintenance cost.

A. Preliminary characteristics

(1) Strict monotonicity of age: Let b0 and b1 be any
two blocks that have the same amount of valid
pages at some time t. Then the cost-benefit values
of these two blocks are equal if and only if they
have the same age:

f cb
b0
(t) = f cb

b1
(t)⇔ ageb0(t) = ageb1(t),

and the cost-benefit value of b0 is greater than the
one of b1 if and only if b0 is older

f cb
b0
(t)> f cb

b1
(t)⇔ ageb0(t)> ageb1(t).

If no pages of these blocks are invalidated, then
this ordering is preserved as time progresses.

(2) Obliviousness: On every invalidation of a block’s
page the block’s last invalidation time is set to the
current time so that its age becomes zero. The age
does not reflect the time it took to invalidate the
previous pages, and we can therefore say that the
block is oblivious about its age. As a result, the
block’s cost-benefit value becomes zero whenever
a page is invalidated.

B. CCB design

First, we leverage cost-benefit’s monotonicity for
reducing the selection time. For our new data structure
we create SB double linked lists where SB denotes the
number of pages per block. Each list i stores all blocks
that have exactly i valid pages and sorts them by their
age in ascending order such that the head is the oldest
and the tail is the youngest block (see Fig. 3). Due to
the monotonicity, this design allows cost-benefit to only
compare the heads of the lists as the head must have the
highest cost-benefit value in its list. Then the selection
time is reduced from O(NB) to O(SB).

Reducing the selection time, however, is only
beneficial if maintenance of the data structure does
not impose additional costs. Previous works like
FeGC also employ a similar technique to reduce
the victim selection time. However, maintaining their
data structure (i.e., heaps) adds significantly high
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overhead. We therefore explain next how the list
functions append(), remove(), and find() are
implemented, and show that they not only suffice to
operate the lists, but that they also run in constant time.

Using a double linked list, appending a block as
a list’s new tail requires constant time by setting the
left and right pointers. Likewise, removing a block has
the same overhead. We extend the zone data structure
by a left and a right pointer to create ordered lists.
Additionally, we keep one pointer to the head and one
pointer to the tail for each list. Note that the FTL
already knows the corresponding zone data structure
for accessed addresses through its mapping table, and
hence, accessing the corresponding zone in a list has a
complexity of O(1).

Finally, we must show that the list is kept in
ascending order, which is immediately implied by the
cost-benefit function’s obliviousness. Whenever some
block b0 is invalidated, its number of valid pages
decreases from i to i−1, and thus it must be removed
from list i and inserted into list i−1. Note that ordered
lists stores full blocks only, and thus their number of
valid pages can only decrease and not increase. Since
the block at list i− 1’s tail b1 has at least the same
age as b0, its cost-benefit value is at least as large as
the one of b0, as f cb

b1
(t)≥ f cb

b0
(t). Hence, appending the

block preserves the ascending order without additional
overhead.

In terms of memory overhead, we added two pointers
each accounting for four bytes, one pointer to each list’s
head, and one pointer to each list’s tail. This totals up
to additional eight bytes per zone and eight bytes per
list. The additional memory overhead imposed by CCB
is the same as the overhead of implementing lists for
greedy. We do not need to add pointers from FTL to
the lists, since linked-list pointers are integrated into the
zone data structure and FTL already includes pointers
to the zone data structure containing the physical page

for any logical page.

IV. Experimental results

In this section, we first detail the experimental setup.
To have a fair comparison, we selected GC policies that
can be employed for large SSDs and have reasonable
memory overheads: greedy, Appr-CB, FeGC, and our
proposed CCB. Greedy has very low overheads and is
considered as the lower bound of GC policy overheads.
Appr-CB exemplifies GC policies with high victim
selection time. We selected Appr-CB over Fast CB and
original CB since it imposes less processing overhead.
FeGC, on the other hand, represents the GC policies
maintaining a costly data structure. FaGC+ is also
excluded because it relies on per-page metadata, which
is significantly costly to access in ZNS SSDs as
discussed in Section II-C. We show the CPU overhead
of various GC policies when scaling the SSD size and
the number of concurrent writes. To show the effect of
employing large zones in ZNS SSDs, we compare the
WAF of GC policies on many zone sizes.

A. Evaluation setup

In the experiments, we employed an enterprise server
with a single 10 core Xeon Gold processor running at
2.50 GHz. The server has 192 GByte of memory and
has been running CentOS 8.2 and Linux kernel 5.1.0.
We implemented all GC policies within dm-zap [9],
which is a kernel device mapper, that implements a
host-side FTL. It exposes a conventional random write
block interface using ZNS SSD as its storage media. To
ensure reproducibility, we obtained traces from several
applications and replayed them in our experiments. For
the TPCC workload, we used HammerDB1 on top of a
MySQL server. The YCSB A [22] workload also used
MySQL as the backend database. It has employed a
Zipf distribution where 95% of the requests are write
operations. In addition, we have used src1 0 and spc1
from the MSR traces [23] as additional trace files. Table
II reports the characteristics of all workloads. We have
measured the WAF when GC policies reach their steady-
state. The over-provisioning factor in all experiments is
set to 10%. We used 1MByte zones in the evaluation,
unless stated otherwise.

B. CPU overhead

As discussed in Section II-D, high CPU overhead is
one of the shortcomings of previous GC policies. Our
proposed GC policy addresses this issue. Fig. 4 shows
the CPU overhead of various GC policies for different
SSD sizes. Note that the CPU overhead mostly depends

1https://www.hammerdb.com/



Workload # of accesses Working set
TPCC 527M 98GB
YCSB A 505M 23GB
src1 0 16M 117GB
spc1 500M 110GB

TABLE II: Workload characteristics
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Fig. 4: CPU overhead of GC policies for various SSD
sizes

on the SSD size, rather than the workload. The overhead
of previous GC policies increases with the SSD size,
since the maintenance cost of their data structure is
not constant. For instance, by increasing the SSD size,
the number of items in FeGC’s heaps increases, which
affects the heap insert/delete latency.

When the size of the SSD is small, i.e., 100GB,
Appr-CB reduces the CPU overhead even compared to
greedy and CCB. However, it needs to scan all blocks
occasionally, and hence, its overhead is affected more
by increasing the SSD size. CCB, on the other hand,
manages its data structure in constant time and imposes
less CPU overhead. For 2 TB SSDs, CCB has 74% less
CPU overhead compared to other GC policies. Since
the required computations for both greedy and CCB
are almost the same, their CPU overhead is also very
similar.

In addition to the SSD size, the number of concurrent
accesses also affects the CPU overhead of GC policies.
They either employ spinlocks or mutexes to provide
concurrency. Since previous GC policies perform time-
consuming operations in their critical section, a higher
amount of concurrent writes will significantly increase
their latency. Concurrent writes can originate from
multiple threads/processes or asynchronous writes by
a single thread.

Fig. 5 shows the CPU overhead of GC policies
for various thread counts on a one TB SSD. Most
of the locks in our implementation are based on
spinlocks, since using mutexes further increases the
latency. The CPU overhead of FeGC almost doubles
when changing the number of concurrent writes from
1 to 64. This shows that complex data structures not
only limit the scalability in terms of the SSD size,
they also impose performance degradation in highly
concurrent workloads. Contrary to scaling the SSD
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Fig. 5: CPU overhead of GC policies for various thread
counts

size, here, Appr-CB is less sensitive to the number of
concurrent writes than FeGC. This is because it does not
require complex operations for updating data structures.
The CPU overhead of CCB (as well as greedy) also
increased slightly, since it needs to hold a lock on the
linked-list for a small amount of time. Scaling from 1
to 64 threads only increases the CPU overhead of CCB
by 15%, while Appr-CB and FeGC see an increase of
30% and 86%, respectively.

C. Write amplification

The main goal of GC policies is to reduce the WAF.
Although the WAF of GC policies has been evaluated
in previous works, ZNS SSDs impose limitations
on some of these policies. For instance, the wear-
leveling approach in FeGC significantly degrades the
performance, and hence, cannot be employed in ZNS
SSDs. Additionally, GC policies assume a relatively
small zone size and are mostly optimized toward such
values. ZNS SSDs can have significantly larger zones,
i.e., >32MB. Here we evaluate the WAF of GC policies
on different zone sizes, to 1) show whether employing
CCB can degrade SSD lifetime, and 2) analyze the
effect of increasing the zone size on WAF. Fig. 6 shows
the WAF for various workloads. A zone size of 1MByte
is highlighted, since we have used this value as the zone
size in all previous experiments.

For the YCSB A workload (Fig. 6a), FeGC, Appr-
CB, and CCB provide an almost identical WAF until a
zone size of 32MByte where CCB and Appr-CB have
a spike. Our analysis shows that many zones have an
almost identical score in our experiments and CCB has
selected the ones which have resulted in a higher WAF.
Appr-CB performs similarly to CCB, since there has
existed a group of hot zones which have been easily
identified by Appr-CB. Greedy has produced higher
WAF values for 1MByte up to 32MByte and has a
spike for 8MByte zones, which shows that employing
larger zones will not yield a higher WAF in all cases.
After 64MByte, all policies suffer from a jump in WAF,
which is caused by mixed hot/cold data in the zones.
It shows that separating hot/cold data provides more
benefits when larger zones are employed.
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Fig. 6: Write amplification factor for various zone sizes

For the src1 0 workload (Fig. 6b), CCB provides
lower WAF than other policies when zones are smaller
than 2MByte. Between 2MByte and 32MByte, greedy
offers slightly better WAF, and afterward, CCB again
offers the best WAF. The WAF of FeGC increases at a
faster pace than CCB, which results in a wide gap for
larger zones. The WAF of greedy suddenly jumps when
zones become larger than 32MByte, however, CCB
maintains its efficiency even for large zones. Contrary
to the previous workload, Appr-CB cannot accurately
identify a suitable victim zone, and hence, its WAF
diverges from CCB. However, it maintains the same
pattern as CCB.

For TPCC workload (Fig. 6c), CCB provides lower
WAF than other policies. However, the difference
between CCB, Appr-CB, and FeGC is small. The
difference between greedy and other policies is
decreased when using larger zones. By increasing the
zone size, WAF increases for all evaluated policies.
ZNS SSDs with 256MByte zones have 2× the WAF
of 256KByte zones. This shows that the current GC
policies are not efficient for ZNS SSDs in some
workloads.

The Spc1 workload (Fig. 6d) shows a different
behavior compared to the previous workloads. For
all GC policies, until 2MByte, the WAF increases.
Afterward, the WAF remains constant, with the
exception of between 64MByte and 512MByte in CCB,
and of course, Appr-CB. Employing larger zones for this
workload reduces the overhead of GC policies without
a penalty on the SSD lifetime. FeGC provides a lower
WAF than CCB for all zone sizes because it considers
the invalidation time of individual pages in the block,
rather than the last invalidation time as being evaluated
in CB and CCB. For the same reason, the spike for
large zone sizes in this workload is higher for CCB
than for other workloads. In this workload, also the
difference between CCB and Appr-CB is higher than
other workloads. This is because the cost-benefit values
are constantly changing and Appr-CB selects victim
zones based on outdated cost-benefit values.

V. Conclusion

The performance and lifetime of SSDs heavily rely
on FTL functionalities like garbage collection. Since
FTLs have been traditionally implemented inside SSDs,
evaluating them directly in state-of-the-art hardware
implementations has not been possible. Emerging SSD
architectures like ZNS allow the fine-grained data
placement within FTLs to be managed by the host, and
hence, evaluating them becomes possible. In this paper,
we have shown that current GC policies suffer from
several scalability limitations, which renders them as not
being practical for large SSDs. Our analysis has revealed
that the victim selection time is not the limiting factor
for many GC policies, but the maintenance of their
internal data structures. To mitigate such limitations, we
have proposed the constant cost-benefit policy, which
has an identical processing overhead compared to the
greedy strategy, while offering the same WAF as cost-
benefit. The experimental results have shown that CCB
reduces the CPU overhead by up to 74%, compared to
previous policies, while having comparable WAF.

In the future, we plan to further analyze the behavior
of GC policies in large zone sizes and improve their
WAF in such cases. Also, we aim to take wear-leveling
into account and optimize GC policies based on it.
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