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Abstract—Data-driven applications are becoming increasingly
important in numerous industrial and scientific fields, growing
the need for scalable data storage, such as object storage. Yet,
many data-driven applications cannot use object interfaces di-
rectly and often have to rely on third-party file system connectors
that support only a basic representation of objects as files in a
flat namespace. With sometimes millions of objects per bucket,
this simple organization is insufficient for users and applications
who are usually only interested in a small subset of objects.
These huge buckets are not only lacking basic semantic properties
and structure, but they are also challenging to manage from a
technical perspective as object store file systems cannot cope with
such directory sizes.

DelveFS is the first object store file system that solves this
challenge by offering the ability to compose a custom semantic
file system that allows multiple unique views onto the object
store. Through flexible filters, users can specify each view’s
content, tailored to their unique interests or an application’s
requirements. By processing object store events which describe
changes in the object store, DelveFS is able to keep all views
eventually consistent. DelveFS allows to operate concurrently
through the object and file system interfaces on the same set
of objects, delivering similar file system throughput compared to
the native object store interfaces or other file system connectors.

I. INTRODUCTION

Data-driven applications are responsible for a huge fraction
of today’s innovations in research and industry. Their underly-
ing technologies, such as big data processing or machine learn-
ing, depend on the availability of huge data sets. As a result,
data is being generated and collected at an increasingly rapid
pace. The capacity requirements to store sequenced genomes
for the bioinformatics community, for instance, are growing
faster than the storage density of hard drives [1], [2]. The Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF)
reached a storage capacity of over 100 petabytes already in
2014 with a 45% annual growth rate [3]. The particle physics
community stores hundreds of petabytes of data generated at
the Large Hadron Collider (LHC) at CERN [4], while the
Square Kilometre Array (SKA) telescope will require more
than 100 petabytes of short term buffer storage for a 12-hour
observation duration and exabytes of long-term storage [5].

Companies also started to manage their data in data lakes,
where all information is stored in the raw format [6]. In data
lakes, before accessing data, applications need to find the
corresponding files among all the files in the lake, adding
to their complexity. Object storage with its high scalability,
low maintenance overhead, flat namespace hierarchy, and
ease of use has made this storage solution a popular option
for such scale-out use cases. Today, many commercial and
academic object stores like Amazon S3 [7], BlobSeer [8],

Ceph [9], Swift [10], OpenIO [11], or Ursa Minor [12] are
available, tackling use cases ranging from archiving, media
and entertainment, and scientific data to the Internet of Things.

New Internet scale applications like Dropbox or Netflix have
been designed to directly use object storage systems through
their native object API [13], [14]. Nevertheless, many data-
driven applications are unable to use the new I/O interfaces
offered by object stores as they rely on a file system which is
semantically similar to POSIX. Adapting the I/O layer of these
applications is typically very time-consuming and, especially
for many proprietary applications, not feasible.

Consequently, several object stores have added a file system
interface or rely on third-party file system connectors [15],
[16], [17], [18], [19] to represent containers (or buckets)
as directories and objects as files. These connectors allow
applications to use object stores through a file system interface
without needing to be modified. Yet, these file systems only
offer a very basic representation of objects as files in a
flat namespace. This is especially an issue when millions of
objects are stored in single containers [20] because of the
complete lack of basic semantic properties and structure.

Although file systems can offer a hierarchical structure to
categorize the data, hierarchies are often insufficient when
dealing with large data volumes. For that reason, the usefulness
of the hierarchical file system model has been questioned sev-
eral times over the past three decades [21], [22], [23]. Instead,
a semantic model was proposed where data is dynamically
searchable so that its organization fits the way it is accessed. In
this regard, some object stores support search capabilities, e.g.,
basic filters for object name wildcards [24] or time ranges [25],
but also more sophisticated metadata search capabilities [26],
[27] that are, however, not available in file system connectors.

In addition to the missing structure and semantics of data,
mapping an object store’s flat namespace into a file system
can also result in severe challenges when a large amount of
data is presented [28]. This is because POSIX-like file systems
are built for managing a hierarchical structure, utilizing many
mechanisms to optimize for this model, such as the dentry
cache which caches directory entries in memory. This is in
contrast to object stores which may gain scalability benefits
by using a flat namespace design [29].

In this paper, we present DelveFS – an object store file
system in user space which offers the ability to compose a
custom semantic file system, kept eventually consistent by
processing object store events which describe changes in the
object store, e.g., the creation of an object. Tailored to the
user’s needs, the file system presents unique views onto the
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object store that can be flexibly filtered by several fields,
such as object names, size, access time, or object properties
(similar to extended attributes in file systems). To support
applications which depend on file locations within a directory
tree, DelveFS allows a hierarchical structure on top of the user-
defined view emulated within the object store’s flat namespace.
In addition, DelveFS supports distributed access from clients
running on many machines, each having potentially different
but possibly overlapping views. We achieve these features
without restricting the use of other object store interfaces
which can concurrently run beside DelveFS.

We demonstrate how we use events to map objects to
files in a flat namespace and how they can be utilized to
provide meaningful semantic subsets of data. Through events,
DelveFS is able to provide low-latency updates of views via
its event handler without heavily disrupting the object store by
otherwise constantly contacting it for changes. Since the file
system uses the object store as a black box, it provides eventual
cache consistency with close-to-open semantics between its
different interfaces and achieves similar throughput compared
to the native object store interfaces.

DelveFS aims for several use cases, such as (1) (virtually)
reducing the number of objects in large containers, (2) filtering
for specific types of objects to ease access to target data of,
e.g., data lake applications, and (3) automatically classifying
new objects to the context of user-defined views. This can be
useful, for example, in short read alignment tools in biology
where large input sequences, classified by object metadata, are
aligned to a reference genome. Instead of scanning potentially
huge containers for input objects with specific metadata and
putting file system connectors and object stores under high
loads, applications can directly filter for desired metadata via
DelveFS’ views. This separates the logic for filtering files
based on regulations and market decisions from applications.

In the following, Section II provides a background to
describe some of today’s object stores’ core functionalities
that are important for DelveFS. Section III describes DelveFS’
goals, its central components, and main design considerations.
In Section IV, we evaluate DelveFS w.r.t. event processing,
event latencies, and metadata and data performance. Finally,
Section V concludes and outlines our future work.

II. BACKGROUND AND RELATED WORK

This section gives an overview of today’s object stores
and their file system connectors, outlining their features,
differences, benefits, and drawbacks.

a) Object storage: Object-based storage has several ad-
vantages over traditional storage methods like relational SQL
databases or file systems. The complexity of containers and
object stores, for example, does not increase when objects are
added, and object stores, hence, tend to scale well [30]. The
flat structure also enables low maintenance overhead.

Many Internet scale applications like Dropbox or Netflix use
object-based storage systems for unstructured data. Nearly all
cloud providers also offer or internally use object storage [31],
[32], [33], while open-source and commercial offerings enable

on-premise hosting of object stores [10], [9]. Several academic
implementations and optimizations of object stores have fos-
tered the development of object storage systems [12], [34],
[35], [36], [37], [38].

We have built DelveFS on top of the OpenIO object storage
architecture [11]. The only specific feature which DelveFS
relies on is the availability of an event notification feature,
independent of its implementation. OpenIO also offers a
traditional file system connector (OIO FS) [39] based on
FUSE [40] (Filesystem in Userspace) which directly maps
objects to files. However, the two file system architectures
are not immediately comparable since OIO FS is mounted
as a network file system (NFS) to its FUSE instance while
multiple DelveFS clients operate directly on FUSE.

b) Object properties: Object properties are similar to
extended file attributes supported by several of today’s file
systems [41], [42], [43]. They are key-value pairs which allow
users to add custom metadata to an object for a more detailed
classification. Most object storage solutions support object
properties, but they differ in their usage.

Amazon S3, for instance, allows two types of object prop-
erties: metadata and tags. Object metadata is tied to the
immutability of the object and cannot be changed, whereas
tags are separately managed. OpenStack Swift, on the other
hand, only allows to upload a set of all properties, instead of
modifying each property individually.

For DelveFS, flexible object property implementations, e.g.,
offered by OpenIO or Google Cloud Storage, work best
since they allow updating key-value pairs similar to extended
attributes in file systems. This is because DelveFS allows the
modification of object properties and uses them not only as
extended attributes but also to offer a hierarchical namespace
on top of the object store’s actual flat namespace.

c) Object storage file systems: Many data-driven ap-
plications cannot work with S3 or custom object storage
interfaces and need a standard POSIX file system interface
instead. Hence, numerous file system connectors have been
developed [44], [19], [45], [15], [17], [18], [46], [47], [48],
[39], allowing an object store to be used as a UNIX file system.

In general, file system connectors present object store
containers (or buckets) as directories and objects as files.
Yet, they differ considerably in functionality and how they
operate. S3QL supports multiple object stores and offers on-
the-fly encryption [44]. SCFS provides strong consistency over
object stores [19]. BlueSky employs a log-structured design
to hide the latency of accessing the backend object store [45].
CephFS [15] uses its own RADOS object store to offer a file
system interface.

The above-listed file systems do not offer dual-access,
and objects can only be accessed through the file system
interface if consistency is required. In this regard, the authors
in [17] discuss the importance and efficiency of dual-accessing
the object store through multiple interfaces. Object store file
systems allowing dual-access are S3FS [18], Goofys [46],
SVFS [47], RioFS [48], and OIO-FS [39].
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However, none of the above-mentioned file systems take
containers with millions or even billions of objects into
account that became increasingly common in today’s object
stores [20]. Instead, they only offer a basic representation of
objects as files in a flat namespace, lacking any structure and
semantics in addition to technical challenges due to metadata
management [28]. Specifically, improving metadata manage-
ment in distributed storage systems is an active research
area [49], [50], [51], [52], [53], and metadata performance
is still an issue in compute clusters [54], [55].

Nevertheless, even if a hierarchical structure would be used
to retain some structure, it is still not enough when managing
large data volumes. As a result, semantic file systems have
been proposed several times over the past decades [21], [22],
[23] where the data is dynamically searchable to achieve a
representation that fits the way the data is accessed. The
authors in [22], for example, use path suffixes to filter files by
ownership and more. Some object stores allow basic filtering
mechanisms, e.g., for object name wildcards [24] or time
ranges [25], or more sophisticated search capabilities for object
properties [26]. Similar functionality is not available in object
store connectors.

DelveFS provides dual-access and offers considerably
higher usability than above-listed file systems by providing
semantic file system views based on a metadata filtering mech-
anism. Additionally, DelveFS overcomes existing restrictions
in managing consistency by coupling the object store’s view
and the user-defined file system’s view through the event
interface of modern object stores. Due to the event interface,
the file system achieves these features without disrupting the
object store, providing fast namespace updates to clients at a
low latency.

d) Event notifications: DelveFS requires notifications
when an object is changed to ensure that both the object
interface and the file system views can become eventually
consistent. DelveFS, therefore, processes an object store’s
events and heavily uses object properties. Object store events
or notifications refer to data which describe an operation
within the object store, such as object write/upload operations,
and can be used to notify an application when an object or
container is updated. Events are available in object stores
like OpenIO, Amazon S3, or in Google Cloud, but they are
still missing in Swift or RADOS. Nonetheless, the event
interfaces offered by various object stores differ significantly
by how events are accessed, by the events’ content, and by
the general features the event interface offers, i.e., which
operations produce events.

For DelveFS, events that describe changes of object prop-
erties or object sizes are particularly important as they are
crucial to update a client’s view on its defined namespace. This
is because object metadata, e.g., properties and sizes, can be
used when a client defines its view (see Section III-D). Object
property events are, however, only supported by OpenIO and
by Google Cloud Storage. DelveFS uses the OpenIO event
interface as an example to leverage on such events.

Agni [17] and YAS3FS [56] use events to notify file

system clients of changes in the object store. Such FUSE-
based file systems, which are usually used in object storage
connectors [17], [18], [44], [39], [19], [46], [47], [48], are,
however, known to struggle with workloads that involve a
large number of metadata operations [57] – also shown in Sec-
tion IV-C2. To address this shortcoming, DelveFS processes
events significantly further to allow user-defined semantic file
system views, allowing fine-grained searches and reducing the
overhead of listing otherwise potentially huge directories.

III. DESIGN

In this section, we present DelveFS’ goals, its architecture
and system components, and discuss how object store events
are processed in the file system and how this processing
influences its consistency model.

A. Goals

DelveFS was designed to achieve the following objectives:
Functionality DelveFS should provide a file system in-

terface to an existing object store through the Linux virtual
file system (VFS). The file system should maintain its own
persistent view of the object store via metadata information,
but it should not store data outside of the object store except
for caching.

Dual-access The object store’s interfaces should be able to
be used at the same time as DelveFS. In addition, multiple
DelveFS clients should be able to operate concurrently and
access the object store in parallel. However, we assume that
a single object is only modified by one client, either DelveFS
or through an object store interface, at a time.

Object property filtering Users should be able to define
rules within DelveFS which only allow them to view objects
in the file system that are of particular interest. Such rules then
filter the object namespace for containers, objects, object sizes,
object access time, or object properties. Filtering for container
and object names should allow not only exact name searches
but also more complex expressions, such as filtering for all
objects with a characteristic prefix or suffix.

Consistency model DelveFS is not intended to strictly
follow the POSIX I/O semantics. DelveFS should instead
provide an eventual consistency model with close-to-open se-
mantics [58]. These semantics are sufficient for our assumption
that only a single client is modifying an object at a time.

A stronger consistency model, e.g., provided by several par-
allel file system implementations [59], [60], would also require
a distributed locking mechanism, and, hence, full control of
the object store. However, we use the object store as a black
box so that various object store interfaces and DelveFS can be
used at the same time. Further, aligning DelveFS more to NFS
semantics allows us to significantly reduce the file system’s
complexity and avoid otherwise intricate and communication-
intensive distributed locking mechanisms [61], [62]. Providing
such file system semantics implies that changes applied to files
within DelveFS may not be immediately visible in the object
store and vice versa due to caching mechanisms and event
processing, affecting both metadata and data operations.
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Fig. 1: DelveFS’ architecture with its components and interaction with the object store.

B. Architecture

Figure 1 shows DelveFS’ architecture, its main components,
and its interaction with an object store. The object storage
backend is given (in this example) by an OpenIO object
store [11] running on multiple nodes. The object store provides
interfaces to communicate metadata and bulk data between the
OpenIO object store and its clients. DelveFS includes the event
handler and supports multiple FUSE file system clients.

The event handler is running as a single instance and is
the core of DelveFS’ ecosystem. It has two primary responsi-
bilities: maintaining the state of the object store’s namespace
by processing its events and filtering the namespace for user-
defined rules. DelveFS allows multiple concurrently running
clients which can be added to and removed from the DelveFS
ecosystem at any time. To significantly reduce the load on
the single event handler instance and to increase file system
performance, clients heavily utilize metadata and data caches.

In general, DelveFS’ architecture focuses on managing the
object store’s metadata to provide a semantic file system view
of objects of interest. So-called rulesets define such views,
each containing a set of filters for relevant objects which are
then placed as files into a directory, defined by the ruleset.

The life cycle of a file starts with its creation either via the
object store interface or the file system interface. Afterward,
the corresponding metadata is forwarded via the event inter-
face to the event handler which updates all affected file system
views of DelveFS clients. Clients do not get notified by these
updates directly, but lazily ask the event handler themselves
when required, for instance, when a user lists a directory. Note,
since DelveFS’ architecture allows dual-access, views may
also be affected by objects that have been created or removed
outside of DelveFS, e.g., through the object interface, whose
produced events are then processed by the event handler.

To remain consistent, DelveFS requires at least three event
types: an object creation event, an object removal event, and an
object update event when its size or its properties are modified.
Properties, i.e., key-value pairs similar to file system extended
attributes, allow a fine-granular way of filtering the namespace.

The communication between DelveFS’ components uses the
Mercury RPC communication library [63]. DelveFS interfaces
Mercury through the Margo library [64] which provides Ar-
gobots-aware wrappers [65] to Mercury’s API.

In the following, we describe each component in detail.

C. Event handler

The event handler stores the object store’s current state,
i.e., its containers and objects, for DelveFS clients’ registered
rulesets. Therefore, the event handler maintains and provides
the metadata of objects of interest, including their directory
structure. In principle, any user can launch the event handler,
e.g., within the context of an HPC compute job. However,
depending on the used object store, allowing the user access
to the object store’s event interface may require administra-
tive support. In summary, the event handler consists of four
components (see Figure 1): (1) A key-value store (KV store)
to keep track of the object store’s state, (2) an event loop
which handles incoming events, describing a change within
the object store, (3) a parallel rule-matching engine to process
the content of each event, and (4) an RPC communication
layer to exchange messages with DelveFS clients.

To store an object’s metadata, e.g., an object’s size, the
event handler operates a local RocksDB KV store, providing a
high-performance embedded database for key-value data [66].
When a client connects, the event handler queries the object
store to list all objects of containers that are part of the client’s
rulesets, if not already available in RocksDB. Therefore,
RocksDB does not necessarily store the full object store
state depending on the rulesets and object store size. Lazily
populating the KV store allows us to avoid a time-consuming
startup time caused by scanning the entire object store.

Furthermore, DelveFS actively discards all events that are
irrelevant to a ruleset. For low-latency access, some of the ob-
ject’s metadata that match a connected client’s ruleset is kept in
memory. Adapting to Google’s object store would additionally
allow only to listen for events of specified containers, which
makes discarding events unnecessary.

In the OpenIO case, events are exposed by one
beanstalkd [67] work queue per OpenIO node that is accessed
by DelveFS’ event handler. Each event in the beanstalkd work
queue describes a single change in the object store, such as
the creation of objects or object properties, and is removed
from the work queue after it has been processed.

The event loop is responsible for pulling events from the
beanstalkd work queues and processing them. At its core, it
consists of multiple progress threads which access beanstalkd
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1 ---
2 Gecko:
3 account : "delvefs"
4 c o n t a i n e r : "gecko_genome"
5 o b j e c t : "*.fasta"
6 p r o p e r t i e s :
7 c o l o r : "black"
8 c o l o r : "green"
9 Leopard:

10 [ . . . ]
11 ---

Fig. 2: An example of the Gecko ruleset in YAML syntax and
its defined rules to filter for objects in the gecko_genome
container.

queues and so-called worker threads which process new events
that have been accessed by the progress threads. The progress
thread identifies the event type and passes the event’s content
to a worker thread, created from a dedicated thread pool.
During the event matching, each worker thread initially checks
if the event refers to a tracked container and if the described
changes apply to any registered ruleset. In that case, the worker
thread updates the KV store and ruleset (if applicable) accord-
ingly. Note that the event handler does not notify a DelveFS
client if an incoming event affects its rulesets. Instead, the
client lazily requests this information when required.

In the case of an event handler failure, no client data is lost
as the event handler is a read-only medium. It does not im-
mediately affect clients, although them being unable to update
their ruleset metadata information. Hence, an interruption does
not break the eventual consistency guarantees. Further, because
the event handler does not store additional information beyond
what is available in the object store, there is no immediate
need for an advanced crash consistency procedure to conserve
events. Such a procedure is part of our future work and could
decrease the necessary time when clients lazily ask for their
data after the event handler is restarted.

D. File system client

The file system client is directly accessed by an application
and connects to the object store and the DelveFS event
handler. It is based on the FUSE library, providing an interface
to export a user space file system implementation to the
kernel. More precisely, DelveFS is using FUSE’s low-level
API which allows a flexible file system design and avoids
various overheads of the high-level API [57].

Once started, it is mounted and can be used like any other
local file system. The client consists of four components: (1) A
file system implementation based on FUSE’s low-level API,
(2) an in-memory caching module to store metadata as well
as data for a short time frame, (3) an object store module to
directly communicate with the object store, and (4) an RPC
communication layer based on Mercury to exchange messages
with the DelveFS event handler.

Next, we discuss how rulesets work and describe DelveFS’
metadata and data management, including their cache policies.

a) Rulesets: When the client is started, it requires a
mount path and a file containing a ruleset, which is a collection
of rules in YAML syntax [68] that the object store should be
filtered for. Each ruleset may consist of five rule categories
with each rule further narrowing down the results: container
name (mandatory), object name, object size, object access
time, and object properties. All rulesets are initially sent to
the event handler which evaluates them and responds with the
results, i.e., the metadata about all matched objects.

Figure 2 presents an example YAML ruleset with the name
Gecko (defined in Line 2), showcasing some of the rule
categories. All objects that match all rules of the set are then
placed into a single directory named after the ruleset. The
ruleset matches all objects in the gecko_genome container
with the properties black color or green color. Alongside exact
matches, DelveFS also supports partial matches by using the *
character. In this case, the object keyword matches against
all objects whose name ends with "*.fasta", an extension
for files storing nucleotide sequences or protein sequences in
the FASTA format [69].

b) Metadata management: The client contacts the event
handler via read-only RPC messages to retrieve the latest up-
date of a directory’s state, i.e., the ruleset’s content. The state
is represented as directory entries and inodes and is kept in in-
memory caches, considered recent for a configurable amount
of time. Therefore, changes in the object store may not be
immediately visible to the client. Note that a file can disappear
from a client’s ruleset directory in specific circumstances. For
example, the corresponding object could have been removed
from the object store, or an object’s properties have changed
and no longer match all ruleset criteria.

File system operations which modify the namespace, i.e.,
creating and removing files or updating their extended at-
tributes, directly communicate with the object store. This
avoids potential consistency issues between DelveFS and the
object store. In general, the object store is always treated as
the primary source of truth and is updated before DelveFS.
For example, if a client creates a file, a corresponding object
is created as well. DelveFS’ event handler is then unaware of
this object until the corresponding create event is processed.
Note, the event handler cannot differentiate whether the object
store was modified by a DelveFS client or by another source
for a given event.

c) Data management: Similar to metadata operations,
an I/O operation does not notify another DelveFS node and
communicates with the object store via its API directly.
However, in terms of I/O operations, the file system interface
is not immediately compatible with an object interface due to
their data handling. For instance, a (local) file system assumes
that data is available in mutable blocks and thus accessible and
changeable at any offset. Object storage, on the other hand,
introduced the concept of immutable objects which cannot be
modified in-place after creation [10], [7].

For this reason, modifications of an object require down-
loading the object, modifying it locally, and then uploading a
new object with the same name that replaces the old object. It

5



PREPRINT – The final publication is available at https:// ieeexplore.ieee.org/document/9229638

is worth mentioning that object replacement is not available in
all object stores and can depend on container configurations,
in which case the object has to be removed first. FUSE-based
file systems, on the other hand, split file system operations
for reads and writes so that they use a maximum buffer
size of 1 MiB and 128 KiB, respectively. In case of a write
operation, downloading the full object and replacing at most
128 KiB of data before uploading it back to the object store
is, therefore, inefficient and slow while causing unnecessary
additional loads over the network.

To address this issue, DelveFS uses a write-back data cache.
It supports both the OpenIO API and the S3 API, which
translates (remote) object store objects to files (henceforward
called object files) and stores the cached data at a user-defined
local file system path outside of the FUSE environment. For
write operations, the data cache allows DelveFS to work
locally until a close or fsync command is issued which
causes DelveFS to upload the object file to the object store.
DelveFS’ semantics assume that data is not changed outside
this client until the data is uploaded back to the object store
and, therefore, only allow a single writer to each file.

For read operations, DelveFS downloads the remote object
on the first encountered read operation and places the resulting
file in the data cache, allowing all following operations to
run locally. The cached file is then considered recent for a
configurable amount of time. To avoid downloading an object
repeatedly after the caching time expires, DelveFS compares
the checksum value of the object file and the remote object.

d) Virtual directories: Rulesets allow users to create
a semantic file system view, but, due to the object store’s
flat namespace, ruleset directories would not have a further
directory structure which might be required by applications
and users. Thus, DelveFS can emulate a directory hierarchy
within a ruleset, e.g., to rebuild the complete Linux operating
system hierarchy. These directories are entirely virtual since
object stores do not support recursive container structures. In
other words, an object’s directory association is stored as an
object property resolved only at the client. As a result, the
directory hierarchy of an object is fixed for all clients.

An alternative approach for such directories are dedicated
directory objects, similar to directory blocks in file systems,
only containing information of object names belonging to the
directory. We decided against this approach because it would
require a central entity (e.g., a global lock manager) that
controls access to such an object so that file system clients
do not overwrite the directory information of each other. In
addition, directory objects are of no value to object store users
and would be considered junk objects.

Nevertheless, in both approaches, virtual directories are tied
to the object and fixed for all clients, although its content
may differ based on the ruleset directory rules. If necessary,
showing virtual directories can be disabled in the ruleset.

IV. EVALUATION

This section presents the evaluation of DelveFS concerning
the performance of the event processing, the file system’s

metadata handling and (ruleset) directory capabilities, and its
data accesses. Finally, we present an example of how rulesets
can benefit an application’s workflow.

A. Experimental setup

In our experiments, we used the Intel Skylake partition of
the MOGON II cluster at the Johannes Gutenberg University
Mainz. MOGON II consists of 1.876 nodes in total, from
which 1.046 nodes contain two Xeon Gold 6130 Intel Skylake
processors with main memory capacities ranging from 64 GiB
up to 1,536 GiB. The cluster nodes are interconnected by a
100 Gbit/s Intel Omni-Path network to establish a fat-tree, and
it offers a Lustre parallel file system as storage backend.

The DelveFS event handler uses local-node SATA SSDs
as backend storage for RocksDB. The DelveFS clients and
the event handler use TCP/IP over Omni-Path as the network
protocol. In all DelveFS experiments, the DelveFS clients and
the applications under test are pinned to separate processor
sockets to minimize possible interference. The FUSE client
library runs in multithreaded mode and uses up to ten threads.

To demonstrate DelveFS’ functionality and performance, we
use an OpenIO object store that runs on ten compute nodes.
Nine nodes serve as storage nodes for data and metadata, and
one node serves as a management node and gateway for meta-
data requests. For data and metadata, OpenIO’ storage nodes
use data center SATA SSDs, offering approximately 1.8 TB of
storage in total. The object store was used in isolation without
any other user accessing it. Internally, OpenIO communicates
using TCP/IP over Omni-Path. External nodes which use the
object store use TCP/IP over Omni-Path as well to download
and upload objects. In S3FS experiments, we use OpenIO’s
S3 interface. Finally, we disabled data replication in OpenIO
and limited versioning to two versions per object.

B. Event processing

DelveFS clients depend on the performance of the object
store’s event interface and the event handler’s ability to process
events quickly. In the case of the OpenIO object store, events
are exposed by the beanstalkd work queue (see Section III-C)
with each of the nine OpenIO nodes running a separate
beanstalk daemon. Henceforward, we use the terms beanstalkd
and work queue interchangeably.

The event handler allows DelveFS to store metadata outside
the object store. Therefore, it avoids that read-heavy metadata
requests, e.g., lookup or readdir, are issued to the object
store directly. Additionally, the event handler allows concepts
like rulesets which filter the namespace in a user-defined way.
Depending on a central entity for this use case implies that the
event handler must be able to process events with reasonable
throughput. In addition, each event must be available for the
client at a low latency if it matches any of its defined rulesets.

We designed three scenarios to evaluate the various compo-
nents of the event handler and to measure its event processing
throughput and event latencies. The first scenario (RAW) covers
the event handler’s raw throughput capabilities when events
are not matching any client ruleset. Since events are only
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Fig. 3: DelveFS’ event throughput in three scenarios.

removed from the work queues and then discarded due to their
inapplicability, this represents the best case as the least amount
of functionality is triggered. The second scenario (MATCH)
measures performance degradation by continuously matching
events to rulesets. MATCH is only accessing a single object
resulting in no updates to the KV store. It is, however, match-
ing to 100 different rulesets. MATCH continuously accesses
RocksDB to read and update metadata, while the limited
number of objects allows RocksDB to (nearly) completely
work in memory. The third scenario (DB_MATCH) also stresses
the KV store. DB_MATCH events do not only match each event
to 100 rulesets but also refer to enough objects in total (10,000
in this case) so that RocksDB must continuously read and
write so-called static sorted table files (SST files) from and
to the underlying storage. SST files contain parts of the KV
store’s entries to persist the KV store’s state to disk. Hence, the
DB_MATCH workload targets all event handler components. A
file system client (on a separate node) set up all necessary rule
sets while remaining idle during all experiments.

a) Event throughput: To measure the event throughput
for the above-described scenarios, we artificially inserted two
million events into each of the nine work queues of the OpenIO
nodes. We used an insertion rate of ~390,000 events per
second in total (about 1-minute runtime) as it exceeds the
event handler’s processing capabilities in the RAW scenario,
allowing us to examine its sustained event throughput.

We did not trigger events by using OpenIO directly because,
due to its limited installation size, OpenIO emitted less than
1,000 events per second. Instead, by using similar artificial
events, we were able to explore the event handler’s processing
capabilities in an environment which generates a significantly
higher number of events per second.

Figure 3 presents the event handler’s throughput for all three
use cases for up to four threads per work queue (x-axis). The
y-axis depicts the event handler’s total throughput in each case.
In the RAW scenario, the event handler processed up to 200K
events per second for four accessing threads per work queue.

In the MATCH scenario, the processing throughput was re-
duced to 180K events per second, mainly attributed, however,
to repeated KV store accesses as each event results in a
put operation to update the object’s metadata. Increasing the
number of threads for each work queue did not yield further
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Fig. 4: DelveFS’ latency distribution of the event handler’s
event processing in the MATCH scenario.

improvements in the RAW and MATCH scenarios.
In the DB_MATCH scenario, the event throughput reached

up to 126K events per second for four work queue threads.
Similar to the MATCH scenario, the performance degradation
is not attributed to matching events to rulesets, but to the
continuous access and modification of the objects’ metadata
information in RocksDB. However, the larger number of
objects also caused the creation of SST files by the KV store
on the backend SSD storage that is constantly written and read.
This slightly delays access to each KV store entry, resulting
in a ~30% reduced throughput compared to MATCH for four
work queue threads.

b) Event latency: The time from when an event enters
the work queue until its changes are available to the client is
defined as event latency. Note that the event handler does not
actively notify connected clients about any changes to a ruleset
(see Section III-C). Therefore, an event’s content is available
to be accessed by clients (if they actively require it) as soon
as the event handler has processed it.

We evaluated DelveFS’ event latency by running the MATCH
and DB_MATCH workloads. We have omitted RAW because
it only processes events which would be irrelevant for all
clients. For each of the two used workloads, we inserted eight
million events in total to all work queues. The event insertion
rate has been set to ~50,000 events per second so that the
maximum latency of MATCH remained below 30 milliseconds.
We also ensured that this insertion rate does not lead to a
saturation in the DB_MATCH scenario since the event latencies
of the more complex DB_MATCH scenario significantly differ
from MATCH. Finally, to compute accurate latencies, the event
handler and workload-inducing benchmark were run on the
same compute node, each on a separate processor socket.

Figure 4 presents the latency distribution for MATCH of eight
million events. In this scenario, each event is matched to 100
rulesets with continuous updates to an object’s metadata saved
in the KV store (see above for details). The x-axis depicts a
non-linear range of latencies to capture all processed events’
latencies, ranging from 100 microseconds to 30 milliseconds.
The y-axis represents the percentage of events that fall into
each latency bucket on a logarithmic scale. For instance, the
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Fig. 6: DelveFS’ metadata throughput when compared to the direct usage of OpenIO’ SDK.
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Fig. 5: DelveFS’ latency distribution of the event handler’s
event processing in the DB_MATCH scenario.

latencies of all events in the 200 µs bucket range from 101 to
200 µs. In this experiment, the event handler showed a low
latency for over 99.8% of events which were processed in less
than 400 µs. The longest latency accounted for 30 ms. We
achieved these low latencies as both the rulesets and nearly
all updates to RocksDB have been kept in memory.

Figure 5 shows the latency distribution for DB_MATCH for
8 million events where all events refer to a total of 10,000
objects in addition to each event being matched to 100 rulesets.
Compared to the latency distribution of MATCH, this workload
resulted in a significantly higher range of latencies, attributed
to congestion at the KV store that can take several seconds.
Nonetheless, over 92% of all events are processed in less than
300 µs with an overall event throughput that is well above the
load that our experimental setup can emit.

C. Metadata performance

This section discusses DelveFS metadata performance, both
for file metadata and directory metadata operations.

1) Microbenchmarks: We evaluated DelveFS’ metadata
performance using a parallel microbenchmark which creates,
removes, and stats 1, 000 zero-byte files per process in a
single container for 8 processes per node. We compared its
metadata operation throughput with the equivalent operations
when using OpenIO’s SDK directly to explore the performance
impacts of DelveFS’ file system layer.

Figure 6 presents the results, each data point representing
the mean of five iterations. The standard deviation has been
calculated as the percentage of the mean. OpenIO’s SDK
throughput reached up to 290 creates per second, 370 removes
per second, and 4,200 stats per second. OpenIO reaches the
maximum throughput for create and remove operations already
for a single client node, showing potential metadata congestion
at the object store. DelveFS did not achieve the same through-
put as each create and remove operation causes multiple
consecutive internal FUSE function invocations, causing a
number of overheads in FUSE’s internal components [57].
Overall, the observed overhead was significantly more preva-
lent in metadata experiments than in the later discussed data
experiments. These effects, however, become less severe for
more than one node where we approached the create and
remove throughput limit of the object store.

DelveFS’ stat throughput was over 23× higher compared
to OpenIO’s SDK because the DelveFS client does not rely
on the object interface when asking for an object’s size and
checksum and instead acquires it from the event handler (see
Section III-D). The event handler can then serve the results
from memory without additional lookups to RocksDB. Bigger
systems might show a lower stat throughput when not all
metadata can be served from memory.

2) Directory operations: We performed several experi-
ments to measure the time required to list large containers with
the commonly used ls -l command for both DelveFS and
S3FS. We restricted the container size to 100K objects, as the
ls -l command did not finish when using larger container
sizes (e.g., 150K objects) for S3FS. S3FS was mounted to the
appropriate container while DelveFS clients used two rulesets
with the same mount point: (1) A ruleset which contains
all 100K objects of the container, and (2) a ruleset which
filters the container for a rule-defined object name prefix,
reducing the number of files within the directory to 100. We
used this configuration to compare DelveFS’ directory listing
capabilities with the established S3FS object storage connector
and to highlight the performance benefits of rulesets if they
operate on a large container. Figures 7a and 7b show the time
required in seconds (y-axis) to execute the ls -l command
for an increasing number of nodes (x-axis) for a cold and hot
cache, respectively. Each node ran a single process, and each
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Fig. 7: Listing a 100K object directory in DelveFS and S3FS
compared to using a ruleset, reducing its size to 100 objects.

data point presents the mean of three iterations.
Figure 7a presents the results for the above-described sce-

narios on a cold cache. Operating system caches were flushed,
and the file systems, including the event handler, were restarted
after each iteration. DelveFS’ cold cache ls -l must include
the time for two additional operations because the client
relies on the event handler’s container scanning (DFS EH
scan) and ruleset processing capabilities, triggered when the
client is started (DFS client start). For a single node,
S3FS required ~360 seconds to list the container contents
compared to DelveFS’ ~22 seconds in total. For increasing
node numbers, the time for S3FS increased to ~2450 seconds
at 32 nodes, while DelveFS’ performance remained stable. We
omit further node numbers as DelveFS’ performance remained
stable for up to 128 tested client nodes.

The reason for S3FS’ 110× longer runtime at 32 nodes
is that clients must share a connection to the object store.
This bottleneck becomes visible at eight nodes, worsening
for more nodes. DelveFS’ event handler, on the other hand,
reads the container’s content only once for all DelveFS clients
using DFS EH scan, while it then can simply use its event
processing. The startup of DelveFS clients DFS client
start for a 100K file ruleset required less than 4 seconds in
all cases, including the communication with the event handler
and its ruleset processing. In fact, the average client startup
time decreased for more nodes because the event handler can

reuse the same ruleset definitions of other clients while they
were starting up at the same time. The ls -l command itself
took less than eight seconds in all cases, mainly attributed
to FUSE’s internal readdir() function that can only serve
~100 entries at a time (depending on the file name length).

When the ruleset DFS ls smaller ruleset with 100
objects was used, the client startup time required less than 150
milliseconds, while ls -l took less than 20 milliseconds.
The startup time and ls -l are, hence, not visible in the
figure. Therefore, the ruleset reduced the initial working set of
the large container and significantly improved the performance
of directory operations.

Figure 7b presents the same cases on a logarithmic scale
for a hot cache, that is, the directory has recently been listed.
This allows each DelveFS client to operate locally. Therefore,
the time required to read the container content and to start the
client is not included in the figure, leaving less than 8 seconds
to list the 100K file ruleset directory (mainly due to FUSE’s
overhead) and less than 10 milliseconds to list the 100 file
ruleset directory. For a single node, S3FS required ~46 seconds
to list the directory but again bottlenecked at around 8 nodes,
indicating that the file system is not operating entirely local.

D. Data performance

In this section, we investigate DelveFS’ I/O performance
and present an example of how rulesets can be used in a
complex workflow by using the Bowtie [70] application.

1) Microbenchmarks: We ran several experiments to eval-
uate DelveFS’ I/O performance. For this task, we have com-
pared DelveFS to directly using the OpenIO SDK (presenting
the upper bound) and S3FS. In our experiments, each iteration
accessed its own file/object and performed 4 GiB writes and
reads per process in succession for up to 16 nodes. In the case
of DelveFS, each experiment iteration can be broken down into
four core I/O operations: (1) Writing test data to local storage,
(2) uploading the data from local storage to the object store,
(3) downloading the data from the object store to local storage,
and (4) reading the test data from local storage.

To investigate the potential FUSE-induced overhead and to
compare DelveFS directly with the equivalent object store in-
teractions, we translated these four core I/O operations so that
they are used in succession when using the OpenIO SDK. For
the S3FS comparison, we disabled its multipart feature because
it resulted in an up to 10% higher throughput. Moreover, since
each core I/O step involves I/O to or from local storage, and
because the network bandwidth to the OpenIO object store
is significantly higher than the node-local SSDs bandwidth,
the DelveFS client’s and S3FS’s data cache are placed on a
RAM disk. However, to prevent read operations reading from
the RAM disk, the file systems are restarted, and the caches
are flushed after each write experiment. Finally, to avoid
measuring the buffer cache instead of the sustained node-
local SSDs performance in OpenIO, we limited the amount
of available memory on the object store nodes.

Figure 8 shows the combined I/O throughput on a logarith-
mic y-axis for up to 16 client nodes. Each data point represents
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the mean of five iterations with the standard deviation as
the percentage of the mean. For 16 nodes in the OpenIO
SDK case, the upload (write) and download (read) throughput
reached up to 2, 500 and 4, 100 MiB per second, respectively.
The throughput is bound by the network for smaller node
numbers, while OpenIO achieved to saturate the expected SSD
I/O throughput starting at 4 clients for reads and 16 clients for
writes. DelveFS was slightly slower for writes, while it was
able also to saturate the object backend for reads starting at 16
clients. We omit further node numbers as the data throughputs
did not increase for up to 128 tested client nodes.

S3FS achieved at most ~282 MiB and ~764 MiB of write
and read throughput, respectively, reached at 8 nodes. Note,
however, that S3FS was unable to complete the workload for
16 nodes, causing I/O errors upon closing the files, resulting in
an incomplete upload to the object store. To allow a successful
completion, we limited the number of processes to 4 per node
for S3FS’ 16 node experiment.

2) Short read alignment: As an example of how DelveFS’
rulesets could be used, we ran a typical workload from the
biology field where many short reads, i.e., short sequences
of less than 200 nucleobases produced by Next Generation
Sequencing (NGS), are aligned to a reference DNA sequence.
For this task, we used the popular Bowtie [70] application to
align a total of ~100 GiB of short reads (consisting of 16
fastq input files1) to a human reference sequence. During the
alignment process ~11 GiB of output data was created.

1We downloaded short read sequences from the National Center for
Biotechnology Information’s (NCBI) Sequence Read Archive (SRA) [71]

In this case, we used rulesets to describe a publish-subscribe
model where the publisher (the sequencer) addressed its sub-
scribers (the alignment processes) based on their interests,
defined as object properties in rulesets. We started DelveFS
clients on up to eight nodes, each with its own unique ruleset.
The publisher then placed the 16 fastq input objects in a
container via the object interface. For each experiment, we
defined the input objects’ properties to address the rulesets of
a set of DelveFS clients, distributing the workload.

A subscriber process on each client node checked the ruleset
directory every minute for new input data and launched the
Bowtie application for each input file in sequence. Figure 9
presents the Bowtie runtimes for these four experiments,
showing the impact of implicit load balancing. Finally, the
alignment results were written to an output ruleset directory
which automatically assigned its defined properties to the
corresponding output files.

This example shows that rulesets are not only able to
improve overall performance, e.g., shown for the DFS ls
smaller ruleset above, but also to simplify the develop-
ment of complex workflows and of load balancing schemes.

V. CONCLUSION

With DelveFS 2, we have presented a novel approach how
object store events can be used to provide unique semantic
file system views for each user. Because experimental data
will likely significantly increase, tailoring object namespaces
of billions of objects to the user’s needs will become even
more important in the future. We have shown how DelveFS
processes up to 200,000 events per second, propagating object
store changes to a client’s view at a low latency. DelveFS
allows dual-access, and we have demonstrated its similar
metadata and data throughput, compared to native object
storage interfaces. Finally, we have evaluated how DelveFS’
rulesets can significantly improve directory operations and
have shown how they could simplify complex workflows.

In the future, we plan to extend DelveFS into three direc-
tions. First, we plan to develop more efficient techniques to
store rulesets in the event handler to be able to persist them
to backend storage w.r.t. failure recovery and to group them
based on their similarities. Second, we intend to explore the
possibility of using a distributed event handler to increase
DelveFS’ event processing capabilities further and remove
the single point of failure in updating clients. Third, we
aim to support additional object store interfaces and study
the benefits of other consistency concepts, such as uploading
objects during the writing process in intervals.
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