
Online Management of Hybrid DRAM-NVMM Memory for HPC

Reza Salkhordeh and André Brinkmann
Johannes Gutenberg University

Mainz, Germany
Email: {rsalkhor, brinkman}@uni-mainz.de

Abstract—Non-volatile main memories (NVMMs) offer a
comparable performance to DRAM, while requiring lower
static power consumption and enabling higher densities.
NVMM therefore can provide opportunities for improving both
energy efficiency and costs of main memory. Previous hybrid
main memory management approaches for HPC either do not
consider the unique characteristics of NVMMs, depend on high
profiling costs, or need source code modifications.

In this paper, we investigate HPC applications’ behaviors
in the presence of NVMM as part of the main memory. By
performing a comprehensive study of HPC applications and
based on several key observations, we propose an online hybrid
memory architecture for HPC. It only requires low-overhead
sampling of memory accesses for its page placement decisions.
The experimental results obtained through running a wide
range of HPC applications show that the proposed architecture
can service up to 88% of accesses from DRAM if 90% of the
main memory is built from NVMM. The NVMM lifetime can
also be extended by up to 90% compared to all-NVMM.

Keywords-HPC; non-volatile memory; heterogeneous mem-
ory; performance;

I. INTRODUCTION

The main memory architecture has become one of the
most challenging aspects when designing high-performance
computers. DRAM as standard memory technology is facing
the scalability wall and it is getting more and more difficult
to produce denser chips [23]. DRAM also significantly
contributes to the total energy consumption of HPC en-
vironments [8]. Therefore, main memory is turning into
a bottleneck which hinders the further scalability of HPC
centers.

The ever-increasing demand of HPC applications for
more computational power and higher memory capacities as
well as these scalability issues force manufacturers and the
HPC community to pursue alternative architectures beyond
DRAM.

Non-volatile main memory (NVMM) is an umbrella term
covering a number of upcoming memory technologies which
do not need constant cell refreshing to sustain their volt-
age levels. Example technologies are phase-change memory
(PCM), racetrack memory, resistive random-access memory
(ReRAM), or Intel’s 3D XPoint technology [25], [29]. They
enable significant reductions of the static energy consump-
tion and also can be manufactured in denser chips [16].
NVMMs are therefore expected to have lower costs than
DRAM [1]. Most NVMM technologies can only endure a

limited number of writes and have an asymmetric read/write
performance. They therefore cannot simply replace DRAM
as main memory [23]. Without wear-leveling techniques,
NVMMs can have lifetimes as low as one month [9].

To take advantage of NVMMs promising characteristics
and to mitigate their shortcomings, several approaches ex-
plored architectures that employ both DRAM and NVMMs
as main memory. Hybrid main memories typically try to
place hot data pages in the faster memory, while cold data
pages are moved towards slower memory [1], [15].

DRAM-NVMM architectures are shown to be effective
in reducing the power consumption and costs with minimal
performance impact [1], [30]. Such architectures, however,
are mostly not designed for HPC environments and can-
not, due to their complex algorithms, be employed with-
out significant hardware modifications. The few previously
proposed DRAM-NVMM architectures for HPC operate by
first profiling complete application runs and then statically
decide the data placement for future runs [5], [26]. This
approach is not portable and can only be used in few
predefined scenarios. To the best of our knowledge, none of
the previous studies have simultaneously considered NVMM
characteristics, online profiling without the need for a prior
analysis, and the applicability to HPC programs without
source modifications.

In this paper, first we present insights into the effect
of running HPC applications on NVMM devices. Second,
we propose a management scheme for hybrid memories
in HPC, which decides the data page placement based on
the workload and NVMM characteristics. In brief, the main
contributions of the proposed scheme are as follows:
1) For the first time, we present a comprehensive study on

memory access patterns of HPC workloads, considering
various applications, sampling rates, and CPU cache
levels.

2) We propose guidelines for lowering the memory access
profiling overhead without any need for specialized hard-
ware, OS, or libraries. To the best of our knowledge,
none of the previous architectures has such a broad
applicability.

3) Unlike previous studies, our strategy does not need costly
a priori application runs to profile data accesses.

4) The proposed hybrid main memory architecture identifies
performance critical data pages by sampling and moves



them to DRAM. Both costly writes to NVMM and its
limited lifetime are considered for the data placement.

5) Data pages are grouped into bins to significantly reduce
the memory overhead with negligible accuracy loss.

Three modules are employed: a profiler, a workload
characterization unit, and a migration manager. The profiler
collects data on the access pattern of data pages. The
workload characterization computes the impact of data pages
on overall system performance and identifies data pages that
need to be moved between memories. Finally, the migration
manager moves the selected data pages between DRAM and
NVMM.

The experimental evaluation was conducted on an NVMM
emulator, embedded into a real HPC environment with
several nodes. We also compared our architecture with
state-of-the-art approaches requiring hardware modifications
using simulations [30]. The comparison shows that the new
architecture is able to achieve a very similar data page
placement quality, while needing orders of magnitude less
resources.

II. RELATED WORK

The significant impact of main memory on overall system
performance and power consumption has motivated many
researchers to investigate hybrid memory architectures to
improve main memory efficiency.

Several studies aimed to reduce the latency gap between
the CPU’s LLC and main memory by employing faster
than DRAM memories as DRAM cache [2], [39]. In many
use-cases, the interface between the CPU and the memory
module is a performance bottleneck and stacked DRAM can
be placed within the CPU chip to remove it. The limited on-
chip size of stacked memory restricts its usage to caching
[2].

Banshee reduces in-chip DRAM cache replacement traffic
by modifying the TLB, the memory controller, and by
introducing a bandwidth-aware frequency-based cache re-
placement policy [39]. A framework to identify and move
hot memory allocations to stacked DRAM is suggested
in [31], which requires an initial full profiling run of the
application for the identification process. This shortcoming
also occurs in other hybrid memory architectures (see, e.g.,
[3]). These studies are orthogonal to our work, since we want
to expand the main memory size by using slower NVMM,
while maintaining good performance. On-chip DRAM can
be used on top of the hybrid DRAM-NVMM main memory
to further hide latencies.

Several studies examined the integration of NVMMs into
main memory as an extension of DRAM [18], [19], [24],
[30], [35]. They can be categorized into general hybrid
DRAM-NVMM architectures, explorations of NVMMs for
HPC applications, and the simulation of hybrid memories.

The general approaches provide placement approaches
for data pages independent of the application type and the

overall system architecture. Park et. al. tried to reduce the
DRAM refresh energy in hybrid architectures by modify-
ing the DRAM controller [24]. Such architectures require
controller modifications and are not within the scope of
this paper. CLOCK-DWF places read-dominant data pages
in NVMM and moves them to DRAM when they receive
write requests [18]. Its migration costs are significant, since
any write access to NVMM results in moving the data
page to DRAM. Implementing the modifications within the
CLOCK algorithm also requires hardware modifications.
TwoLRU analyzes the performance, power, and lifetime
costs of migrating data pages between memories and limits
the number of migrations [30]. TwoLRU imposes significant
hardware overheads for its LRU implementation. M-CLOCK
tries to reduce the high migration costs between memories,
while also reducing the number of NVMM writes [17].
Similar to CLOCK-DWF, two clock handles are employed in
M-CLOCK and a lazy bit is added to the CLOCK algorithm.
A write access to a page in NVMM, which has its lazy
bit set, results in migrating it to DRAM. Updates to the
CLOCK data structure are conducted by the CPU and M-
CLOCK therefore requires CPU modifications. UIMigrate
also tries to reduce the number of migrations by considering
the migration cost [33]. It employs a global data structure
for identifying hot pages in both DRAM and NVMM. To
control migrations, pages are moved from NVMM to DRAM
if their score is more than that of a page in DRAM plus the
migration cost.

HeteroOS shows that virtualization platforms can also
benefit from hybrid memories if the hypervisor has access
to the guest OS data structures and can employ them to steer
the data page placement [12].

The second group of previous studies focused on opti-
mizing hybrid memories for HPC applications. LWPTool
profiles applications to identify loops and memory-intensive
data structures [38]. They are fed into an offline analyzer
to compute the placement of data objects. CoMerge profiles
applications to identify performance-critical data objects and
places them on DRAM [5]. In addition to the LWPTool, it
optimizes the interplay of multiple applications running on
the same node by considering the applications’ sensitivity
to moving data to NVMM. The need for the offline phase
and multiple runs of the application significantly reduces the
applicability of LWPTool and CoMerge. The HpMC mem-
ory controller sits between the LLC and the memory bus.
It switches between an inclusive cache-based architecture,
where the DRAM serves as cache for the NVMM, and
an exclusive flat memory systems based on the temporal
locality of the workload. HpMC requires a redesign of
the memory controller to either use NVMM as memory
extension or as cache [32].

There are several studies on hybrid memories in HPC
which require source code modifications to steer the data
page placement [7], [20], [26], [34]. Static decision using



profiling data for placing data objects in either DRAM
or NVMM have been shown to be effective for several
applications [26]. Unimem enables the programmer (and
requires from him) to annotate compute-intensive loops and
target data objects, while allocating memory with a custom
allocator [34]. Unimem profiles the application, based on
the annotations and then calculates the data placement. Mi-
grating data between memories is conducted via a separate
thread to reduce the performance overhead. UH-MEM esti-
mates the benefit resulting from migrating data pages from
NVMM to DRAM for HPC applications and pages with
higher overall system benefit are chosen for migration [19].
The performance benefit of moving a data page is computed
by considering parameters such as access frequency, data
locality, and possible parallelism of servicing the requests.
Hardware as well as software modifications are required
to implement such an architecture. These studies, however,
are not in the scope of this paper, as their applicability is
limited to use-cases where the source code of the program
is available.

Tahoe [35] has been designed for task-parallel programs
and profiles a set of representative tasks and computes
suitable data pages for placing in DRAM. The memory page
placement is determined before running the tasks, based on
the output of the representative tasks. In case of limited
DRAM while running multiple tasks, data pages are selected
for migration to DRAM based on the predicted performance
effect. Unlike Tahoe, the architecture proposed in this paper
is designed for general HPC environments, where no such
profiling is possible.

Due to the lack of access to NVMM devices, previous
studies proposed emulators to analyze NVMMs. HME re-
serves a NUMA node for emulating NVMM and analyzes
the number of memory accesses to this NUMA node for
each processor core [6]. After fixed intervals, it adds delays
to the applications by keeping physical processes busy. The
delays are based on the number of remote DRAM accesses,
which acts as NVMM replacement, and the difference
between remote DRAM and target NVMM latencies. The
same approach has been proposed in pVM [13]. Siena has
been designed to allow fast design space explorations to
analyze many possible memory configurations and usages.
It transforms the application behavior and the machine
model into a domain specific language (DSL) which can
be simulated using a memory simulator [27].

Additional aspects of hybrid memories such as reliability
and durability have been investigated in previous studies like
[11], [36], which are also not in the scope of this paper.

To summarize, previous studies exploring DRAM-NVMM
memories for HPC either suffer from applicability due to
source code modification, require altering the hardware, or
depend on full-run profiling.

III. HPC WORKLOADS CHARACTERIZATION

This section conducts a comprehensive study on the
memory behavior of HPC applications. The goal of this
characterization is three-fold: study the feasibility of using
hybrid memories for HPC applications by understanding
HPC applications’ access patterns, present the trade-off
between memory access sampling overhead and its accuracy,
and explore the effect of the profiling interval on the
efficiency of hybrid memory.

We have selected five applications from the NERSC trinity
benchmark set [4] and also included NAMD [28], Tealeaf
[22], and Lulesh [14]. To ensure that this characterization
is generalizable to a wide range of HPC environments,
the workloads are selected in such a way to cover most
types of HPC applications such as: 1) CPU or memory
intensive (CI/MI) programs, 2) applications with large or
small memory footprint (LM/SM), and 3) programs with
high or low locality (HL/LL). We measured the number
of memory accesses per executed instruction to determine
CPU- or memory-intensive workloads. The memory foot-
print is defined as the number of unique accessed virtual
memory pages. A program is categorized as having a high
locality if more then 50% of accesses belong to the top
10% most accessed data pages. The applications can be
characterized as follows:
• AMG (MI, LM, LL) is a multigrid solver for unstructured

grids.
• MiniGhost (MI, LM, LL) simulates heat diffusions across

homogeneous domains using a stencil approach.
• GTC (MI, SM, LL) is a parallel particle-in-cell code to

support the plasma experiment reactor ITER.
• MILC (CI, SM, HL) is a quantum chromo dynamics

application.
• NAMD (MI, LM, HL) is a molecular dynamics package

scaling beyond 500.000 cores.
• SNAP (CI, LM, LL) mimics the behavior of the neutral

particle transport simulator PARTISN.
• Tealeaf (CI, SM, HL) is a benchmark designed to explore

the architectural design space for iterative sparse linear
solvers.

• Lulesh (MI, SM, HL) approximates hydrodynamics equa-
tions by solving a simple Sedov blast problem. It can be
seen as representative for C++-based HPC applications.

The applications were running on eight nodes using 32
cores each. Each node included two Skylake Xeon Gold
6130 16-core processors, offering 96 GByte memory. For
this analysis, both instrumenting memory accesses by Intel
PIN [21] and hardware sampling using Processor Event-
Based Sampling (PEBS) [10] have been used.

Intel PIN instrumented all memory operations of the
programs including libraries such as MPI. Most memory
operations are cached within the different CPU caches and
never reach the main memory. It is therefore necessary to



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

N
o

r
m

a
li

z
e

d
 A

c
c

e
s

s
e

s

Read

Write

LuleshTealeafSNAPNAMDMilcGhostGTCAMG

Figure 1: Normalized number of accesses, which can be serviced by DRAM ratios of 5%, 10%, 25%, 50%, and 100%.

simulate the cache levels to obtain accesses from PIN traces
that have been actually sent to memory. We have tried to
keep the simulation as similar as possible to the physical
Skylake CPU.

In PEBS, the processor stores its state in a memory
buffer at a given sample rate. The OS sets a counter in
the processor alongside the required operation (i.e., memory
load) to sample. The processor decreases the counter by
one each time the operation is executed. When the counter
reaches zero, the processor captures its internal state in a
memory buffer specified by the OS. Once the buffer is full,
the processor informs the OS via an interrupt to process the
data. Using this method significantly reduces the sampling
performance overhead, since the OS is only involved each
time the buffer is full.

A. Applicability of DRAM-NVMM for HPC

DRAM is (still) significantly faster and can endure more
write accesses than higher-density NVMM. Hybrid DRAM-
NVMM main memories are therefore most effective when a
large percentage of accesses can be serviced by a small set of
data pages. Moving these hot data pages to DRAM enables
us to achieve a performance-efficient hybrid memory, while
reducing overall power consumption and NVMM wear-out.

We analyzed the HPC applications and investigated the
access patters to their working sets. Fig. 1 shows the
normalized maximum number of accesses, which can be
serviced by various DRAM ratios within hybrid memory,
if all accesses are known in advance. We can make four
major observations:

• A DRAM capacity of 25% of the working set size is
always sufficient to service more than half of the accesses
from DRAM. This shows that hybrid memory can be
effectively deployed in HPC.

• Most accesses to hot pages are reads and reserv-
ing DRAM for write-intensive pages can under-utilize
DRAM.

• The selected HPC applications are read-intensive, which
is the preferred workload type for hybrid memories.

• Data writes would mostly be serviced by NVMM if only
data hotness would be considered for GTC or SNAP.

B. Sampling Overhead and Accuracy Tradeoff

The hybrid memory management scheme proposed in this
paper requires an online profiler to identify performance-
critical data pages. The online profiler, of course, incurs
performance overheads when processing a huge number of
samples. Obtaining all memory accesses in the runtime is
therefore impractical due to the significant overheads and
it is necessary to minimize the overhead of the profiler.
Reducing the sample rate can significantly decrease the
performance overhead and allows us to perform a more
complex analysis on the sampled memory accesses, while
aiming for less than 1% performance overhead. The accuracy
of sampling, however, depends on having a sufficient number
of sampled memory accesses in a fixed time interval.

We used the Intel PIN tool to extract the access frequen-
cies to memory pages over a range of sampling rates, as
PEBS imposes a limit on the maximum sampling rate. The
preprocessing of the (complete) data allowed us to virtually
scale the sampling rates from including all accesses up to
only having a granularity of one sample per one million
accesses.

Fig. 2 shows the access frequencies to memory pages
for AMG including various sampling rates. Please note that
based on different sampling rates, the scaling differs between
the experiments. To normalize the figures, the number of
sampled pages are multiplied by the sampling rate. All
accessed virtual addresses were sorted and grouped into
1,000 equally-sized bins. To do so, we pass through the
sorted list of pages and mark the start and the end address
of each bin. Note that only data pages, which have been
accessed are considered. The effect of the number of bins
is discussed later in this section.

Lower sample rates cannot sample all virtual addresses
and therefore the boundaries of the bins as well as the
peaks might be shifted to the left or the right, compared to
sampling all accesses. Another observation is that additional
peaks are present for lower sample rates. Our analysis has
shown that this is due to numerous consecutive accesses to
hot data pages, which results in sampling such data pages
regardless of the sample rate. If such anomalies are ignored,
hot regions can be identified even for one sample per 64k



 0

 200000

 400000

 600000

 800000

 1x10
6

 1.2x10
6

 1.4x10
6

 1.6x10
6

 1.8x10
6

 2x10
6

 0  200  400  600  800  1000

(a) All accesses

 0

 2x10
6

 4x10
6

 6x10
6

 8x10
6

 1x10
7

 1.2x10
7

 1.4x10
7

 1.6x10
7

 1.8x10
7

 2x10
7

 0  200  400  600  800  1000

(b) Once per 16 accesses

 0

 1x10
7

 2x10
7

 3x10
7

 4x10
7

 5x10
7

 6x10
7

 7x10
7

 8x10
7

 9x10
7

 0  200  400  600  800  1000

(c) Once per 16k accesses

 0

 2x10
7

 4x10
7

 6x10
7

 8x10
7

 1x10
8

 1.2x10
8

 1.4x10
8

 1.6x10
8

 0  200  400  600  800  1000

(d) Once per 64k accesses

Figure 2: Memory access frequency of AMG for various sampling rates over 1000 bins

Table I: Parameters Description

Parameter Description
aαk Sampling accuracy for sample rate k and DRAM size of α
hαk Set of α hottest data pages for sample rate k
wh The weight of old priority of bins. Defaults to 0.1
latr NVMM relative write latency, compared to DRAM
latw NVMM relative read latency, compared to DRAM
tx Execution time of phase x

CPUx CPU usage of phase x

accesses. The hot regions are, however, flattened for lower
sample rates.

The sampling accuracy a is defined as denoted in Equation
1. It depends on the number α of the hottest pages (which
will be moved to DRAM) and the sampling rate k. The
description of notations throughout the paper is reported
in Table I. Sampling all accesses leads to the most precise
identification of hot data pages, and hence, it is used as the
baseline to measure the accuracy of other sampling rates. To
this end, the hottest data pages identified by k sample rate
(hαk ) is compared to the identified pages by the sampling of
all accesses (hα1 ). The percentage of correctly selected data
pages by k sampling rate (pages present in both hαk and hα1 )
is considered as the accuracy for this sampling rate.

aαk =
|hα1

⋂
hαk |

|hα1 |
(1)

Fig. 3 shows the accuracy of various sample rates for
choosing hot data pages. The x-axis denotes the percent-
age of the selected data pages and the y-axis denotes the
accuracy according to Equation 1. NC sample rates denote
No Cache values, where the simulation of the CPU cache
levels has been turned off and all load and store operations
are considered to directly access main memory. Obtaining
all memory operations for sampling rates higher than once
per 16k accesses is not considered due to the significant
performance overhead of simulating the accesses without
cache.

Sampling at least once per 64k requests guarantees for
our application mix a minimum accuracy of 70%, which
seems acceptable, considering its negligible performance
impact. Note that although a lot of information is lost for

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

5% 10% 20% 25%

A
c
c
u

ra
c
y

DRAM Ratio

0
1

15
1K

16K
16K-NC

64K
64K-NC

256K
256K-NC

1M
1M-NC

Figure 3: Sampling rates accuracy for AMG benchmark

this sampling rate, it does not need to correctly predict the
order or access frequency of hot data pages and as long as
a hot data page is moved to DRAM by a sampling rate, it is
considered as a correct hot page identification. Decreasing
the sample rate to less than once per 64k results in losing
the boundaries of hot regions and hence, our architecture
cannot use such sample rates. Due to the page limitation,
we omitted the results for the other benchmarks, while their
results lead to the same conclusions.

The effect of simulating CPU cache levels on the sam-
pling accuracy is also shown in Fig. 3. Considering all
sampled load and store operations as memory accesses has
a negligible effect on the overall accuracy. Therefore, for
both instrumenting and hardware-based simulation, sampled
load and stores can be used instead of the actual memory
accesses. The hardware-based sampling also benefits from
this simplification, since sampling all types of memory
accesses (e.g., prefetch, dirty page eviction, or read miss)
is not possible for several CPUs. Additionally, sampling
memory operations can be done without root privilege,
which increases its applicability.

Fig. 4 shows the accuracy for a varying number of bins.
Grouping the pages into 1.000 bins results in more than
80% accuracy compared to having one individual counter
for every data page. Increasing the number of bins to 10.000
slightly improves the accuracy, while it adds 10x more
memory usage. Using less than 1.000 bins cannot provide
sufficient accuracy and the memory usage saving cannot
justify the accuracy loss.

The actual performance overhead of sampling memory
accesses is evaluated by running applications using various



 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

AMG GTC Ghost MILC NAMD SNAP Tealeaf Lulesh

A
c
c
u

ra
c
y

Bins
100

1000
10000

Figure 4: Accuracy of various bins count

sampling rates via PEBS. Fig. 5 shows the additional CPU
usage for these sampling rates. Sampling once per 64k
accesses has less than 0.18% performance overhead per pro-
cessor core for the sampling and additional 0.79% overhead
for processing the samples. Note that although sampling at
high frequencies such as once per 100 accesses has less
than 0.5% performance overhead, the amount of samples
that needs to be processed by the proposed architecture
significantly increases: one sample per 100 accesses leads
to an overhead of 390%. Therefore, sampling once per 64k
accesses seems suitable from both accuracy and overhead.

C. Sampling Interval

Sampling memory accesses can impose performance over-
heads to the system. In this section, we evaluate the effect of
only sampling a fixed number of accesses and deciding the
placement of data pages based on such short-time sampling.
Pages are, in this scenario, only allowed to be moved once
between DRAM and NVMM. To this end, the number of
DRAM accesses is compared in two scenarios:
1) The optimal scenario profiles the whole runtime of an

application by running it once for profiling, deciding
the placement and running it again counting DRAM
accesses,

2) The online scenario profiles a fixed number of accesses at
the beginning of the execution, performs data movements
based on this profiling and counts DRAM accesses.

The first scenario has the shortcomings of previous stud-
ies, which require running the application at least twice
and is only used as a baseline. Furthermore, all data pages
in Scenario 2 are placed in NVMM first. Fig. 6 shows
the normalized average memory access time (AMAT) for
varying numbers of profiled accesses. The x-axis denotes
the DRAM-percentage of the overall memory. In this exper-
iment, data pages are only moved once between memories.
All values are normalized to the optimal data placement,
which knows all accesses to the data pages in advance.
It migrates pages with highest number of accesses in the
future to DRAM. We used a fixed number of accesses for
profiling, since we assume that we do not know the type
of the running application. Hence, it is not possible to set
the profiling interval as a percentage of the approximate total
number of accesses of the application. If such information is

10
-4

10
-3

10
-2

10
-1

10
0

10
1

128k 64k 1k 100

N
o

rm
a

li
z
e

d
 P

e
rf

. 
O

v
e

rh
e

a
d

Sampling Overhead
Processing Overhead

0.06%

0.18% 0.24%
0.38%0.305%

0.79%

39.04%

390.4%

Figure 5: Performance overhead for various sampling rates

available, they can be easily integrated into our architecture
to further improve accuracy or profiling time.

One observation is that increasing the profiling interval
does not necessarily result in performance improvements.
This is because data pages are moved to DRAM later if the
profiling interval is longer, compared to short profiling inter-
vals. Another observation is that very short profiling intervals
like 1 mil. accesses can provide comparable performance
to the optimal algorithm if the DRAM size is relatively
small. This is due to the distribution of accesses, where a
few data pages are massively accessed. This distribution can
be easily identified by all algorithms and profiling intervals
if the DRAM capacity is small. Profiling 5 mil. accesses
seems to be a suitable profiling interval for most of the
examined HPC applications, in terms of profiling overhead
and provided latency.

The main conclusions of the comprehensive workload
characterization are as follows:
1) Hot memory regions can be identified with high accuracy

by sampling once per 64k accesses.
2) Simulating CPU cache levels does not have a significant

positive effect on the overall accuracy and can be omitted.
3) Grouping memory data pages into 1.000 bins can sig-

nificantly reduce the memory overhead, while imposing
negligible accuracy loss.

4) Profiling a number of accesses at the start of the HPC
applications can be employed to identify hot data pages
with high accuracy. A fixed value, suitable for most of
the HPC applications, can be selected.

5) A relative short profiling phase can compete with an
optimal placement if the DRAM size is relatively small
compared to the NVMM size.

IV. PROPOSED ARCHITECTURE

The proposed hybrid DRAM-NVMM main memory ar-
chitecture considers the observations made in the previous
section to accurately perform data page placements. It is
designed in a way that no hardware or OS modifications
are required. All employed libraries are packages shipped
with standard Linux distributions. This ensures that the
proposed hybrid memory management scheme has a higher
portability compared to previous approaches. This is impor-
tant, since NVMMs has just entered the market, and the
manufacturers did not adapt any of the previous ideas, which



 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

5% 10% 20%

N
o

r
m

a
li
z
e
d

 A
M

A
T 1M

5M

10M

(a) AMG

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

5% 10% 20%

N
o

r
m

a
li
z
e
d

 A
M

A
T 1M

5M

10M

(b) GTC

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

5% 10% 20%

N
o

r
m

a
li
z
e
d

 A
M

A
T 1M

5M

10M

(c) Ghost

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

5% 10% 20%

N
o

r
m

a
li
z
e
d

 A
M

A
T 1M

5M

10M

(d) Milc

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

5% 10% 20%

N
o

r
m

a
li
z
e
d

 A
M

A
T 1M

5M

10M

(e) NAMD

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

5% 10% 20%

N
o

r
m

a
li
z
e
d

 A
M

A
T 1M

5M

10M

(f) SNAP

 1

 1.1

 1.2

 1.3

 1.4

 1.5

5% 10% 20%

N
o

r
m

a
li
z
e
d

 A
M

A
T 1M

5M

10M

(g) Tealeaf

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

5% 10% 20%

N
o

r
m

a
li
z
e
d

 A
M

A
T 1M

5M

10M

(h) LULESH

Figure 6: Normalized AMAT of various number of profiled accesses (1M/5M/10M) compared to an optimal hybrid memory.

require hardware modifications. Compatibility with common
operating systems and standard libraries employed in HPC
environments ensures a fast and cost-efficient integration of
NVMMs. To reduce the memory overhead and to ensure that
the proposed architecture is scalable in terms of memory
size, the address space is split into a fixed number of bins
and housekeeping information is only kept per bin.

Fig. 7 shows the overall information flow of the proposed
architecture. Dashed boxes are modules of the proposed
architecture, while solid boxes are unmodified. Applications
access virtual addresses, which are mapped to physical ad-
dresses on either DRAM or NVMM. The CPU samples the
accessed memory locations and sends them to the Profiler
module. PEBS records are decoded in this module and the
accessed virtual addresses are passed to the Characteriza-
tion module. After deciding which data pages need to be
migrated, their addresses are sent to the Migration module.
This module prepares the required data and calls a system
call to actually move the data pages. In the following, the
three new modules of the proposed architecture are presented
in more detail.

Section III-C has shown that the access pattern can be
well predicted by only sampling the memory accesses at the
beginning of a short-running application and then by moving
data pages according to their hotness. Longer running ap-
plications can of course change their access pattern and the
proposed approach therefore works in phases of configurable
length. Profiling, characterization, and migration are again
only performed at the beginning of each phase to minimize
their performance impact.

A. Profiler

The profiling module samples the memory accesses of the
target application. Accesses from the OS and other software
such as monitoring and job scheduling are discarded by the
profiler. This results in a lower number of sampled accesses
and hence, reduces the performance overhead.

The workload characterization in Section III has shown
that we can sample memory operations instead of the actual
memory accesses with only a negligible loss in precision.

CPU

TLB

APP

Virtual Address

NVMMDRAM

Profiler
PEBS

Characterization
x5

x1

Migration

Main Memory

NUMA CTL

Figure 7: Architecture of the proposed hybrid memory

The profiler is able to use both techniques and if hardware
sampling of memory accesses is not possible, we switch and
sample memory operations. Instead of physical addresses,
the proposed profiler collects virtual addresses of the HPC
application. They are more portable and can be used in
standard libraries for moving data pages. Sampled virtual
addresses are placed in bins, which only store the accumu-
lated number of accesses to the data pages belonging to
them. The profiler also stores the start and end address of
each bin to be able to map each virtual address to one bin.
Reads and writes are separately counted for data pages.

When the required number of samples has been collected
by the profiler, it is disabled to remove the performance
overhead and also to free the CPU hardware performance
counters. After the profiling phase, the counters can be em-
ployed to count the number of memory accesses to DRAM
and NVMM to observe the efficiency of the proposed
architecture. Upon starting of the next profiling phase, the
counters will be again used for profiling. Re-configuring the
PEBS counters to change from a profiling to an evaluation
phase, and vice versa, is not a costly operation and requires
negligible time to perform.

B. Characterization

The characterization module analyzes the sampled ac-
cesses to perform the data page placements. Due to the
difference between the read and write latencies of NVMMs,
we count number of read and write accesses separately.
Write-intensive requests should be given higher priority,
since we gain more benefit in terms of performance, NVMM



lifetime, and also energy consumption from placing them
in DRAM. We therefore consider each write access as
equivalent to three read requests, which is close to their
latency difference, according to previous studies [37].

The hotness of data pages can change during the applica-
tion runtime. We therefore perform several sampling phases
to adapt to such changes and decrease the priority of all data
pages before a new sampling phase begins. Therefore, the
most recent sample phase always has a higher impact on the
final priority of data pages, compared to older samples.

The proposed architecture needs the minimum and max-
imum virtual addresses to decide the virtual addresses be-
longing to bins. To do so, we observe the sampled addresses
in each sampling period and if any address exceeds the
maximum (or minimum) address of previous samples, the
new addresses are placed in the first or last bin. The first
sampling period is the exception, which requires all accessed
pages to decide the initial start and end address of bins.

The granularity of data pages is significantly higher than
the memory access granularity. Therefore, a migrated data
page from NVMM to DRAM should have a larger number
of accesses to compensate for the migration cost. This cost
is also considered in the decision-making process before
moving data pages. The latency of reading a page from
NVMM and writing it to DRAM (and moving a page from
DRAM to NVMM, if DRAM is full) is considered as the
migration cost. In our evaluations, this latency is equivalent
to executing consecutive load and store operations to read
from NVMM and write to DRAM (and in opposite direction
if needed). If the priority of a data page in NVMM is higher
than the priority of a data page in DRAM plus the migration
cost, it is considered for migration. This method prevents
costly migrations that do not provide enough performance
and/or lifetime benefit. Furthermore, decisions are always
made on the granularity of bins.

Equation 2 denotes the formula for calculating the priority
of a bin. latr and latw denote the relative latencies of
NVMM for read and write operations, respectively. The
weight value wh controls the effect of the previous priority
on the new calculated priority. This will ensure that pre-
viously hot data pages are given more chances to stay in
DRAM.

prionew =wh · prioold +

pages∑
(reads · latr + writes · latw) · (1− wh)

(2)

C. Migration

The migration module is responsible for moving data
pages at the granularity of bins between memories. Since
DRAM and NVMM are assigned to separate (virtual or
physical) NUMA nodes, we can move data pages by their
virtual addresses using numactl and the OS handles all the
required modifications in the page table of the process as

 1  7 1  3  5  0  11
DRAM

  210  6  7  7  3
NVMM

(a)

 5  7  11  0  1
DRAM

 3
Demotion Candidates

Pivot

 7 10  3  6  2 7

NVMMPromotion Candidates

(b)

Pivot + Overhead

 7  3  6  210
NVMM

Promotion Candidates

    3     +         5 = 8

> 8

 3

(c)

Figure 8: Selecting data pages for promotion/eviction. Num-
bers represent the priority of data pages.

well as of the TLB after moving the data page. This signifi-
cantly improves the portability of the proposed architecture,
while also reducing the performance overhead, since the OS
kernel is optimized to perform these operations.

The module first computes the bins that should be moved
to the other memory, which is done in four steps:

1) Find the K bins in DRAM with the lowest priorities.
Since we only need to partition the bins in DRAM, the
complexity of the method is lower than that of sorting
the bins (n · log(n), where n denotes the number of bins
in DRAM). The complexity of the partitioning is O(n)
on average.

2) The migration module searches for bins in NVMM
with higher priority, compared to the partition pivot of
the DRAM bins. Note that the priority of the partition
pivot is increased by the migration cost, before being
compared to the NVMM bins. This ensures that the
migration cost is considered for selecting bins to be
promoted from NVMM to DRAM.

3) The required number of bins is moved from DRAM
to NVMM to free-up space for the selected bins for
promotion.

4) Bins from NVMM are promoted to DRAM, using a
system call to the NUMA kernel module.

All steps are transparent to the application and there is no
need to stop the execution of the application and/or block its
access to a part of the data pages. Note that this method also
works for shared data pages between application processes.
If a shared data page is selected for promotion to DRAM,
the virtual to physical address mapping of all other processes
is also updated. Fig. 8a shows sample bins along with their
priorities. The value of K is considered 3 in this example.
Fig. 8b denotes the state of the partitioned bins after Step
1. Note that the bins within a partition are not necessarily
sorted. The partitioning is conducted on both DRAM and
NVMM, where the K lowest and highest priorities are
selected from DRAM and NVMM, respectively. The priority
of promotion candidates in NVMM is then compared to the
DRAM partition pivot and eligible bins for promotion are
selected as shown in Fig. 8c. The bins for demotion are
selected from the partitioned bins. If we want to have a
higher accuracy, we can sort such bins to select the bins
with minimum priority. This, however, adds performance
overhead to the system, if the number of partitioned bins



is high. Therefore, such sorting is optional in our proposed
architecture.

The system call to move data pages can operate on non-
continuous virtual addresses and hence, we can move all
data pages of a bin by a single system call. The OS might
not be able to move all data pages to NVMM due to
reasons, such as locking. Since DRAM can hold many data
pages, checking the status of each move can increase the
performance overhead. Therefore, the proposed architecture
does not retry moving data pages if the OS refused to move
them. Such data pages remain in NVMM and if they are
still hot in the next profiling cycle, the proposed architecture
tries to move them to DRAM again. If the number of failed
migrations is high, a part of the DRAM will be unused,
which decreases the efficiency of the proposed architecture.
In our evaluations, such locking rarely happened and there-
fore, we simply skipped the data pages that are not migrated
to DRAM until the next phase.

V. EXPERIMENTAL RESULTS

In this section, we first provide the experimental environ-
ment for our testing and then the evaluations of the proposed
architecture is presented. We compared our architecture with
a baseline DRAM-only, a baseline NVMM-only, TwoLRU
and UIMigrate architectures [30], [33]. The experiments are
conducted on the MOGON II supercomputer at the JGU
Mainz. All nodes were equipped with two Intel Skylake
Xeon Gold CPUs. The HME [6] emulator for NVMMs
has been used to simulate NVMM. PCM is selected as
the NVMM for evaluations since it is the most promising
NVMM in terms of maturity. The read and write latencies
of NVMM were set to 2x and 5x the latencies of DRAM,
respectively. The energy consumption values are obtained
from [30], since the values used in [33] are not known.
Read and write energy consumption for DRAM and NVMM
are 3.2ηj, 3.2ηj and 6.4ηj, 32ηj, respectively. DRAM static
power consumption is considered 1j

GB×second , while NVMM
static power is one tenth of DRAM. The DRAM size was set
to 10% of the working set size of the applications. The total
memory size was varying between 1 GByte to 2.5 GByte per
CPU core. Each phase lasted 10 minutes and the applications
runtimes were varying between 1 to 6 hours.

A. DRAM Efficiency

Since DRAM has a better performance than NVMM,
servicing more requests from DRAM also results in higher
performance. To measure the efficiency of the proposed
architecture, we measured the number of memory accesses
serviced by DRAM. Fig. 9 shows the normalized num-
ber of DRAM accesses, compared to the total number of
memory accesses. In most applications, more than 40% of
the accesses are serviced by DRAM, which shows that the
proposed architecture efficiently identified hot data pages for
placing in DRAM.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

AMG GTC MiniGhost MILC NAMD SNAP Tealeaf LuleshN
o

rm
a

li
z
e
d

 D
R

A
M

 A
c

c
e

s
s

e
s

Proposed

TwoLRU

UIMigrate

Figure 9: Normalized number of DRAM accesses, compared
to all-DRAM main memory

One observation is that Tealeaf was able to service more
than 90% of the requests by DRAM even if the accuracy of
selecting bins has only been 80%. Our analysis has shown
that this is due to the large number of bins with almost the
same priority. The proposed architecture selected bins with
negligible lower priority compared to the optimal algorithm.
Such bins are identified as incorrectly selected, while the
penalty to select them is small. Only 20% of the memory
requests of the GTC benchmark were serviced by DRAM.
The low DRAM utilization is based on the memory access
pattern of this workload. Hot data pages do not have a
spatial locality and by moving bins between memories, many
cold data pages were also moved to DRAM. To prevent
this problem, we can increase the number of bins for such
workloads.

Fig. 9 also shows the normalized number of memory
accesses, serviced by DRAM when using TwoLRU or
UIMigrate. Both require hardware modifications and impose
significant CPU overhead. The threshold values are set
according to [30], [33]. The proposed architecture has a
comparable performance to both, while removing the need
for hardware and/or software modifications. The highest gap
between the architectures can be seen for the GTC workload,
since TwoLRU and UIMigrate manage the memory at the
granularity of data pages, while our proposed architecture
only requires a granularity on the level of bins. UIMigrate
has higher DRAM efficiency, compared to TwoLRU, due to
its superior migration control mechanism.

Fig. 10 shows the normalized execution time of the
proposed architecture, compared to all-DRAM main mem-
ory. We do not compare our runtimes with TwoLRU and
UIMigrate, as the use of them leads to extreme sampling
and characterization overheads if not being implemented in
hardware. Our proposed architecture significantly reduces
the execution time of all benchmarks compared to all-
NVMM systems by employing a small amount of DRAM
in addition to the NVMM. For workloads like NAMD, the
execution time is even reduced to half compared to all-
NVMM. This shows the efficiency of hybrid memories and
the effectiveness of the proposed architecture in identifying
hot memory regions.

The comparison between all-DRAM and all-NVMM sys-
tems shows that the runtime difference can be as small as
30% for GTC or AMG workloads, while increasing to a



 0.5

 1

 1.5

 2

 2.5

 3

 3.5

AMG GTC MiniGhost MILC NAMD SNAP Tealeaf Lulesh

N
o

rm
a
li
z
e
d

 R
u

n
ti

m
e All-DRAM

Proposed

All-NVMM

Figure 10: Normalized execution time, compared to all-
DRAM main memory

factor of more than 3 for workloads like MILC or NAMD.
This shows that employing slower memories does not affect
all applications in the same manner and that using all-
NVMM systems is a viable option for some workloads.

Our architecture only induces a performance penalty
of less than 20% for most workloads when being com-
pared to all-DRAM systems. Nevertheless, the benchmarks
MiniGhost, Tealeaf, and NAMD show a higher sensitivity
to the usage of NVMM. However, since NVMMs are more
dense and less expensive than DRAM, we can have larger
main memories and calculate more complex models per node
or we can afford to build clusters with higher node counts.

B. NVMM Writes and Lifetime

Reducing the number of writes to NVMM can signifi-
cantly benefit the HPC environment, due to the performance
penalty of write accesses in NVMM and its limited lifetime.
Fig. 11 shows the normalized number of write accesses to
NVMM compared to an all-NVMM scenario. By moving
10% of the data pages to DRAM and by also prioritizing the
write-intensive data pages, the proposed architecture reduces
the number of NVMM writes by more than 50% in most of
the examined workloads. This reduction in the number of
writes results in extending the NVMM lifetime by 2x on
average.

Tealeaf shows the highest reduction of writes to NVMM,
as it has a relatively small set of write-intensive data pages.
As a result, the NVMM lifetime can be extended by 10x
compared to all-NVMM main memory. This shows the
importance of prioritizing write-intensive data pages, instead
of only considering the frequency of accesses. GTC shows
the smallest reduction of writes to NVMM (only 10%),
which is equal to the DRAM to NVMM ratio. This is, again,
due to the low spatial locality of hot and write-intensive data
pages in GTC, as we move data pages at the granularity of
bins and therefore, in this case, also always move several
cold data pages to DRAM.

C. Energy Consumption

Fig. 12 shows the normalized consumed energy of the
proposed architecture compared to all-DRAM main memory.
All-NVMM main memory fails to improve energy con-
sumption due to its higher power consumption in read and
write accesses. In AMG and GTC workloads, the hybrid

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

AMG GTC MiniGhost MILC NAMD SNAP Tealeaf LuleshN
o

r
m

a
li
z
e
d

 N
V

M
M

 W
r
it

e
s

Figure 11: Normalized number of NVMM writes, compared
to all-NVMM main memory

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

AMG GTC MiniGhost MILC NAMD SNAP Tealeaf Lulesh

N
o

rm
a
li
z
e
d

 E
n

e
rg

y Proposed
all-NVMM

Figure 12: Normalized energy consumption, compared to
all-DRAM main memory

architecture fails to save energy since most of the memory
accesses are serviced by NVMM. Such workloads are not
suitable for hybrid or all-NVMM architectures, in terms of
energy saving. In other workloads, the proposed architecture
has up to 48% energy saving, compared to all-DRAM main
memory.

D. Architecture Overheads

The overheads of the proposed architecture can be cate-
gorized into three groups: 1) performance, 2) memory, and
3) CPU. The performance overhead concerns the increase in
the runtime of the application. The performance overhead of
profiling is reported in Fig. 5 for various sampling rates. The
overhead for migrating data pages depends on the number of
requested migrations between memories. In our experiments,
the wall-clock time of executing the move pages function
was less than 2 seconds. However, not all accesses are
blocked during the migrations and only the accesses to
the moved data pages were serviced with slight delay.
Note that the migration overhead is only dependent on the
time intervals of profiling. If this interval is long enough
(i.e., more than 2 minutes), which was the case in our
experiments, the migration overhead will be less than 1%.

To decrease the memory overheads, we only obtain the
number of accesses to bins, instead of all data pages. For
each bin, four variables are stored: 1) start address, 2) end
address, 3) number of reads, and 4) number of writes.
Each variable had a size of 8 bytes and by considering
1.000 bins, the total overhead of managing bins was around
32KB. Hence, the total required memory for the proposed
architecture is small enough to be placed in the L1 cache
of the CPU, which minimizes its footprint on the overall
system performance.

Equation 3 denotes the formula to prorate the CPU
overhead of the various phases of the proposed architecture



across the execution of the application. tx and CPUx denote
the time interval and CPU usage for phase x. The three
phases are: 1) profiling (prof ), 2) migrating data pages
(mig), and 3) program execution after migrations (run).
The CPU overhead of profiling is reported in Fig. 5. In the
migration phase, where bin priorities are compared and can-
didates for migration are selected, the proposed architecture
consumes 100% of the CPU time. The duration of this phase,
however, is very short (less than 5 seconds) and hence,
the overall CPU overhead is small. In the experiments,
profiling is conducted every 10 minutes, and based on the
experiments, the CPU overhead is less than 0.85% for all
the examined workloads.

Overhead =
tprof · CPUprof + tmig · CPUmig

tprof + tmig + trun
(3)

VI. CONCLUSION

NVMMs can provide higher density and lower power
consumption. Due to the asymmetric performance and
endurance limitations, NVMMs cannot entirely replace
DRAM. Hybrid DRAM-NVMM architectures have been
suggested in previous studies, which suffer from several
shortcomings such as high profiling overhead and need for
source code modification. In this paper, we proposed an
online hybrid memory management scheme, without any
offline characterization and/or profiling. It groups data pages
in bins to reduce the memory overhead and employs the
sampling mechanism of CPUs to profile the workload in
the runtime. Experimental results show that the proposed
architecture can service 51% of accesses, on average, from
a small DRAM. The number of writes serviced by NVMM
is reduced by 46% on average, compared to all-NVMM.

REFERENCES

[1] N. Agarwal and T. F. Wenisch, “Thermostat: Application-
transparent page management for two-tiered main memory,”
in Proceedings of the Twenty-Second International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Xi’an, China, April 8-12,
2017, pp. 631–644.

[2] L. Alvarez, M. Casas, J. Labarta, E. Ayguadé, M. Valero,
and M. Moretó, “Runtime-guided management of stacked
DRAM memories in task parallel programs,” in Proceedings
of the 32nd International Conference on Supercomputing
(ICS), Beijing, China, June 12-15, 2018, pp. 218–228.

[3] H. Brunie, J. Jaeger, P. Carribault, and D. Barthou, “Profile-
guided scope-based data allocation method,” in Proceedings
of the International Symposium on Memory Systems (MEM-
SYS), Old Town Alexandria, VA, USA, October 01-04, 2018,
pp. 169–182.

[4] M. J. Cordery, B. Austin, H. J. Wassermann, C. S. Daley,
N. J. Wright, S. D. Hammond, and D. Doerfler, “Analysis
of cray XC30 performance using trinity-nersc-8 benchmarks
and comparison with cray XE6 and IBM BG/Q,” in High
Performance Computing Systems. Performance Modeling,
Benchmarking and Simulation - 4th International Workshop
(PMBS), Denver, CO, USA, 2013, pp. 52–72.

[5] T. D. Doudali and A. Gavrilovska, “Comerge: toward efficient
data placement in shared heterogeneous memory systems,”
in Proceedings of the International Symposium on Memory
Systems (MEMSYS), Alexandria, VA, USA, October 02 - 05,
2017, pp. 251–261.

[6] Z. Duan, H. Liu, X. Liao, and H. Jin, “HME: A lightweight
emulator for hybrid memory,” in 2018 Design, Automation
& Test in Europe Conference & Exhibition (DATE), Dresden,
Germany, March 19-23, 2018, pp. 1375–1380.

[7] S. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish,
R. Sankaran, J. Jackson, and K. Schwan, “Data tiering in het-
erogeneous memory systems,” in Proceedings of the Eleventh
European Conference on Computer Systems (EuroSys), Lon-
don, United Kingdom, April 18-21, 2016, pp. 15:1–15:16.

[8] S. Ghose, A. G. Yaglikçi, R. Gupta, D. Lee, K. Ku-
drolli, W. X. Liu, H. Hassan, K. K. Chang, N. Chatterjee,
A. Agrawal, M. O’Connor, and O. Mutlu, “What your DRAM
power models are not telling you: Lessons from a detailed ex-
perimental study,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems (PMACS), vol. 2, no. 3,
pp. 38:1–38:41, 2018.

[9] V. Gogte, W. Wang, S. Diestelhorst, A. Kolli, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Software wear man-
agement for persistent memories,” in 17th USENIX Confer-
ence on File and Storage Technologies (FAST), Boston, MA,
February 25-28, 2019, pp. 45–63.

[10] P. Guide, “Intel® 64 and ia-32 architectures software devel-
oper’s manual,” Volume 3B: System programming Guide, Part,
vol. 2, 2011.

[11] M. Gupta, V. Sridharan, D. Roberts, A. Prodromou,
A. Venkat, D. M. Tullsen, and R. K. Gupta, “Reliability-aware
data placement for heterogeneous memory architecture,” in
IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), Vienna, Austria, February 24-28,
2018, pp. 583–595.

[12] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan, “Het-
eroos: OS design for heterogeneous memory management in
datacenter,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA), Toronto, ON,
Canada, June 24-28, 2017, pp. 521–534.

[13] S. Kannan, A. Gavrilovska, and K. Schwan, “pvm: persistent
virtual memory for efficient capacity scaling and object
storage,” in Proceedings of the Eleventh European Conference
on Computer Systems (EuroSys), London, United Kingdom,
April 18-21, 2016, pp. 13:1–13:16.



[14] I. Karlin, J. McGraw, E. Gallardo, J. Keasler, E. A. León,
and B. Still, “Abstract: Memory and parallelism exploration
using the LULESH proxy application,” in 2012 SC Compan-
ion: High Performance Computing, Networking Storage and
Analysis (SC), Salt Lake City, UT, USA, November 10-16,
2012, pp. 1427–1428.

[15] H. A. Khouzani, F. S. Hosseini, and C. Yang, “Segment and
conflict aware page allocation and migration in DRAM-PCM
hybrid main memory,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 36, no. 9, pp.
1458–1470, 2017.

[16] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek,
O. Mutlu, and D. Burger, “Phase-change technology and the
future of main memory,” IEEE Micro, vol. 30, no. 1, p. 143,
2010.

[17] M. Lee, D. Kang, and Y. I. Eom, “M-CLOCK: migration-
optimized page replacement algorithm for hybrid memory
architecture,” ACM Transactions on Storage (TOS), vol. 14,
no. 3, pp. 25:1–25:17, 2018.

[18] S. Lee, H. Bahn, and S. H. Noh, “CLOCK-DWF: A write-
history-aware page replacement algorithm for hybrid PCM
and DRAM memory architectures,” IEEE Transactions on
Computers, vol. 63, no. 9, pp. 2187–2200, 2014.

[19] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu,
“Utility-based hybrid memory management,” in 2017 IEEE
International Conference on Cluster Computing (CLUSTER),
Honolulu, HI, USA, September 5-8, 2017, pp. 152–165.

[20] F. X. Lin and X. Liu, “memif : Towards programming het-
erogeneous memory asynchronously,” in Proceedings of the
Twenty-First International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS), Atlanta, GA, USA, April 2-6, 2016, pp. 369–383.

[21] C. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G.
Lowney, S. Wallace, V. J. Reddi, and K. M. Hazelwood, “Pin:
building customized program analysis tools with dynamic
instrumentation,” in Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Imple-
mentation, Chicago, IL, USA, June 12-15, 2005, pp. 190–200.

[22] S. McIntosh-Smith, M. Martineau, T. Deakin, G. Pawelczak,
W. P. Gaudin, P. Garrett, W. Liu, R. P. Smedley-Stevenson,
and D. Beckingsale, “Tealeaf: A mini-application to enable
design-space explorations for iterative sparse linear solvers,”
in 2017 IEEE International Conference on Cluster Computing
(CLUSTER), Honolulu, HI, USA, September 5-8, 2017, pp.
842–849.

[23] O. Mutlu, “Memory scaling: A systems architecture perspec-
tive,” in Proceedings of Memcon, Santa Clara, CA, USA, Aug.
2013.

[24] H. Park, S. Yoo, and S. Lee, “Power management of hybrid
dram/pram-based main memory,” in Proceedings of the 48th
Design Automation Conference (DAC), San Diego, California,
USA, June 5-10, 2011, pp. 59–64.

[25] S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic
domain-wall racetrack memory,” Science, vol. 320, no. 5873,
pp. 190–194, 2008.

[26] A. J. Peña and P. Balaji, “Toward the efficient use of multi-
ple explicitly managed memory subsystems,” in 2014 IEEE
International Conference on Cluster Computing (CLUSTER),
Madrid, Spain, September 22-26, 2014, pp. 123–131.

[27] I. B. Peng and J. S. Vetter, “Siena: exploring the design space
of heterogeneous memory systems,” in Proceedings of the
International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC), Dallas, TX, USA,
November 11-16, 2018, pp. 33:1–33:14.

[28] J. C. Phillips, R. Braun, W. Wang, J. C. Gumbart, E. Tajkhor-
shid, E. Villa, C. Chipot, R. D. Skeel, L. V. Kalé, and
K. Schulten, “Scalable molecular dynamics with NAMD,”
Journal of Computational Chemistry, vol. 26, no. 16, pp.
1781–1802, 2005.

[29] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner,
Y. Chen, R. M. S. and Martin Salinga, D. Krebs, S. C.
and Hsiang-Lan Lung, and C. H. Lam, “Phase-change random
access memory: A scalable technology,” IBM Journal of
Research and Development, vol. 52, no. 4-5, pp. 465–480,
2008.

[30] R. Salkhordeh and H. Asadi, “An operating system level
data migration scheme in hybrid DRAM-NVM memory ar-
chitecture,” in 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Dresden, Germany, March
14-18, 2016, pp. 936–941.

[31] H. Servat, A. J. Peña, G. Llort, E. Mercadal, H. Hoppe,
and J. Labarta, “Automating the application data placement
in hybrid memory systems,” in 2017 IEEE International
Conference on Cluster Computing (CLUSTER), Honolulu, HI,
USA, September 5-8, 2017, pp. 126–136.

[32] C. Su, D. Roberts, E. A. León, K. W. Cameron, B. R.
de Supinski, G. H. Loh, and D. S. Nikolopoulos, “Hpmc:
An energy-aware management system of multi-level memory
architectures,” in Proceedings of the 2015 International Sym-
posium on Memory Systems (MEMSYS), Washington DC, DC,
USA, October 5-8, 2015, pp. 167–178.

[33] Y. Tan, B. Wang, Z. Yan, Q. Deng, X. Chen, and D. Liu,
“Uimigrate: Adaptive data migration for hybrid non-volatile
memory systems,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), Florence, Italy, March 25-
29, 2019, pp. 860–865.

[34] K. Wu, Y. Huang, and D. Li, “Unimem: runtime data man-
agementon non-volatile memory-based heterogeneous main
memory,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and
Analysis, (SC), Denver, CO, USA, November 12 - 17, 2017,
pp. 58:1–58:14.

[35] K. Wu, J. Ren, and D. Li, “Runtime data management
on non-volatile memory-based heterogeneous memory for
task-parallel programs,” in Proceedings of the International
Conference for High Performance Computing, Networking,
Storage, and Analysis (SC), Dallas, TX, USA, November 11-
16, 2018, pp. 31:1–31:13.



[36] J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Bo-
rase, T. B. D. Silva, S. Swanson, and A. Rudoff, “Nova-fortis:
A fault-tolerant non-volatile main memory file system,” in
Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP), Shanghai, China, October 28-31, 2017,
pp. 478–496.

[37] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Nimble
page management for tiered memory systems,” in Proceed-
ings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS), Providence, RI, USA, April 13-17, 2019,
pp. 331–345.

[38] C. Yu, P. Roy, Y. Bai, H. Yang, and X. Liu, “Lwptool: A
lightweight profiler to guide data layout optimization,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29,
no. 11, pp. 2489–2502, 2018.

[39] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. De-
vadas, “Banshee: bandwidth-efficient DRAM caching via
software/hardware cooperation,” in Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), Cambridge, MA, USA, October 14-18,
2017, pp. 1–14.


