
TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (TETC) 1

RC-RNN: Reconfigurable Cache Architecture for
Storage Systems Using Recurrent Neural

Networks
Shahriar Ebrahimi, Reza Salkhordeh, Seyed Ali Osia, Ali Taheri, Hamid R. Rabiee, and Hossen Asadi

Abstract—Solid-State Drives (SSDs) have significant performance advantages over traditional Hard Disk Drives (HDDs) such as lower
latency and higher throughput. Significantly higher price per capacity and limited lifetime, however, prevents designers to completely
substitute HDDs by SSDs in enterprise storage systems. SSD-based caching has recently been suggested for storage systems to benefit
from higher performance of SSDs while minimizing the overall cost. While conventional caching algorithms such as Least Recently Used
(LRU) provide high hit ratio in processors, due to the highly random behavior of Input/Output (I/O) workloads, they hardly provide the
required performance level for storage systems. In addition to poor performance, inefficient algorithms also shorten SSD lifetime with
unnecessary cache replacements. Such shortcomings motivate us to benefit from more complex non-linear algorithms to achieve higher
cache performance and extend SSD lifetime.

In this paper, we propose RC-RNN, the first reconfigurable SSD-based cache architecture for storage systems that utilizes machine
learning to identify performance-critical data pages for I/O caching. The proposed architecture uses Recurrent Neural Networks (RNN) to
characterize ongoing workloads and optimize itself towards higher cache performance while improving SSD lifetime. RC-RNN attempts
to learn characteristics of the running workload to predict its behavior and then uses the collected information to identify performance-
critical data pages to fetch into the cache. We implement the proposed architecture on a physical server equipped with a Core-i7 CPU,
256GB SSD, and a 2TB HDD running Linux kernel 4.4.0. Experimental results show that RC-RNN characterizes workloads with an
accuracy up to 94.6% for SNIA I/O workloads. RC-RNN can perform similarly to the optimal cache algorithm by an accuracy of 95% on
average, and outperforms previous SSD caching architectures by providing up to 7x higher hit ratio and decreasing cache replacements
by up to 2x.

Index Terms—Data Storage Systems, I/O Caching, Solid-State Drives, Recurrent Neural Networks, Applied Machine Learning, I/O
Workload Characterization

F

1 INTRODUCTION

Storage subsystems have significant impact on the over-
all performance of enterprise Input/Output (I/O) intensive
applications. The major performance bottleneck of storage
subsystem is mechanical storage devices such as Hard Disk
Drives (HDDs), which suffer from limited response time.
With emergence of Flash-based Solid-State Drives (SSDs) that
have no mechanical components, the performance of storage
subsystem can be significantly improved. SSDs, however,
have several drawbacks such as reliability concerns [1],
[2] and one order of magnitude higher price per capacity
compared to HDDs [3].

To alleviate the shortcomings of SSDs while exploiting
their benefits, employing SSD as an I/O cache for HDD-
based storage subsystems has been studied in the previous
studies [3], [4], [5], [6], [7], [8], [9], [10]. In SSD-based
I/O caching architectures, frequently accessed requests are
buffered in the SSD to provide fast response time while
other requests are supplied by HDDs. Several application
domains such as Database Management Systems (DBMS), mail

• All of the authors are associated with the Department of Computer
Engineering at Sharif University of Technology, Tehran, Iran.
E-mails: shebrahimi@ce.sharif.edu, salkhordeh@ce.sharif.edu,
osia@ce.sharif.edu, taheri@ce.sharif.edu, ra-
biee@sharif.edu, asadi@sharif.edu.

servers, OnLine Transaction Processing (OLTP), and High Per-
formance Computing (HPC) can benefit from SSD-based I/O
caching [3], [5], [7]. Each aforementioned domain, however,
has a distinct workload characteristic and therefore, requires
a specific caching policy to fully exploit the benefits of SSD.

Flash cells in SSDs need to be erased before writing.
Such cells can only endure a limited number of erases
and hence, have a limited lifetime. Each cache replacement
requires writing a new data page to the SSD and therefore,
the number of cache replacements directly affects the SSD
lifetime. Moreover, Due to the limited and expensive capac-
ity of SSDs compared to HDDs, the cost of buffering I/O
requests is very high. Therefore, accurately identifying the
performance-critical data pages is crucial for a cost-efficient
SSD-based caching architecture. Hence, for efficiently man-
aging the I/O cache to improve performance while ex-
tending SSD lifetime, caching architectures should: (1) have
accurate knowledge about the behavior of the current work-
load, and (2) be able to reconfigure themselves in case of
workload changes. Such reconfiguration can be conducted
by providing feedback, based on changes in hit the ratio [4],
[5], [6]. Employing static flags for requests to distinguish
metadata from data requests has also been suggested in
the previous studies [7], [8]. Moreover, in architectures such
as [3], [11], cache priorities are updated periodically based
on the workload type. In addition, several previous studies

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (TETC) 2

 0

 10

 20

 30

 40

cambridge msn fileserver
metadata

Radius
Authentication

Radius
backed sql

home topgun

54% 50%
H

it
-r

a
ti

o
 (

%
)

Oracle
LRU

Access
LARC

(a) Hit Ratio

 0.01

 0.1

 1

 10

 100

cambridge msn fileserver
metadata

Radius
Authentication

Radius
backed sql

home topgun

R
e
p

la
c
e
m

e
n

ts
 p

e
r

1
0
0
 I
/O

s

Oracle LRU Access LARC

(b) Cache Replacements

Fig. 1: Oracle Compared to Conventional Algorithms

aim to reduce the number of writes in SSD to increase SSD
lifetime even at the cost of performance degradation [5],
[10].

A major limitation of existing SSD-based caching archi-
tectures such as [4], [5], [6], [7] is that they are adapted from
conventional caching algorithms employed in either main
memory or processors cache levels. Such algorithms depend
on high temporal and spatial locality while I/O workloads
mostly exhibit unpredictable behavior with no linear lo-
cality [12], which degrades cache performance and SSD
lifetime by issuing inefficient cache replacements. To show
the inefficiency of previous studies in I/O workloads, we
run experiments to compare hit ratio of Least Recently Used
(LRU), Access Frequency [4], and LARC [5] with the Optimal
Cache replacement policy [13] (Oracle/Belady) under four
different I/O traces from Storage Networking Industry Associ-
ation (SNIA) [14]. Figure 1a and Figure 1b show the hit ratio
and the number of cache replacements conducted for con-
ventional algorithms as opposed to the Oracle (i.e., optimal)
algorithm, respectively. Although conventional algorithms
have high hit ratio in workloads with high locality such as
mail index, they still impose significant number of unnec-
essary cache replacements, which decreases SSD lifetime.
Moreover, under workloads such as Radius Backed SQL,
conventional algorithms fail to provide high hit ratio due to
the low linear locality in I/O requests. [3] These experiments
reveal that conventional algorithms are not efficient for SSD-
based I/O caching and impose high number of unnecessary
cache replacements in many scenarios.

In addition, several existing architectures: a) are opti-
mized towards a selection of workloads [5], [6], [7], [8] or b)
modify standard filesystems to provide information about
request types [7], [8], which makes them heavily dependent
on a particular filesystem. Unlike CPU level caches, the av-
erage response time of I/O requests is several milliseconds,
which provides sufficient thinking time to execute complex
computations to efficiently identify and predict workload
behavior. Such predictions can help caching architectures to
reduce the performance and endurance gap between opti-
mal and conventional algorithms. To the best of our knowl-
edge, none of the previous studies have utilized machine
learning methods to achieve higher cache performance in
storage systems while preserving the cache lifetime intact.

In this paper, we propose the first reconfigurable SSD-
based cache architecture, called RC-RNN, which tries to im-
prove both performance and endurance of SSD-based caches

by employing Machine Learning to: a) identify workload
type, b) decide which data pages should be buffered, and
c) decide which data pages are no longer beneficial to be
buffered. RC-RNN proposes several request characteristics,
which are used by the Machine Learning method to accu-
rately identify the running workload. For each workload
type, a Machine Learning model is constructed, which per-
forms very similar to the Optimal cache policy by deciding
to ignore or buffer miss accesses and evicting the cold data
pages from the cache. The proposed cost function employed
to construct the Machine Learning model considers several
workload and storage device characteristics in order to
accurately estimate the cost and benefit of buffering data
pages.

We utilize Recurrent Neural Network (RNN) in the pro-
posed architecture as one of the most powerful machine
learning methods, which is proven to be accurate in several
application domains such as text analysis [15] and speech
recognition [16]. Finding patterns in a trace of the I/O
requests has similarities to both of the mentioned applica-
tion domains, which encouraged us to select RNN as the
machine learning method. RC-RNN consists of offline and
online phases. Any time-, CPU-, and memory-consuming
operations are placed in the offline phase and are done only
once. In the online phase, RC-RNN monitors the running
workload and decides which data pages should be buffered
or evicted based on the constructed models. To improve SSD
lifetime, RC-RNN does not copy all missed data pages to
the cache. The data pages with low probability of access in
the future are ignored and responded directly by HDD to
reduce the number of writes in SSDs.

RC-RNN is designed to be reconfigurable with negligible
reconfiguration cost. To this end, it monitors I/O requests
online and evaluates the workload time periodically offline.
Upon detection of any change in the workload type, RC-
RNN switches the loaded RNN model to match the new
workload type. Note that the reconfiguration process is
accomplished only by a swap of small RNN models (around
40 MB) in memory, which also can be loaded simultaneously
due to low memory consumption. The internal state of cache
is also updated to reflect the workload change. The reconfig-
uration process enables RC-RNN to have high accuracy in
various workload types unlike previous studies which are
optimized toward a few workloads [4], [5], [7].

We evaluate RC-RNN by using real SSDs and HDDs in
a server equipped with Core-i7 CPU running Linux 4.4.0

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (TETC) 3

on Ubuntu 16.04 operating system. RNN models are imple-
mented by using the Keras [17] library and the online phase
experiments are evaluated only by CPU. We show that the
proposed characterization method has up to 94.5% accuracy
in detecting workloads from SNIA I/O traces [14]. Experi-
mental results show that RC-RNN can perform similarly to
Oracle algorithm with less than 5% error in both preventing
seldom accessed data pages from entering the cache and
timely deciding the data pages to evict. RC-RNN improves
hit ratio by up to 7x (2x on average) compared to state-of-
the-art caching architectures. By filtering seldom accessed
data pages, RC-RNN reduces the number of writes in SSD by
up to 22% (1.7% on average) compared to previous studies.

In summary, the main contributions of this work are as
follows:

• We propose the first comprehensive I/O workload
characterization method, which considers long de-
pendencies between requests. Unlike previous work-
load characterization methods, which only consider
a limited number of past requests, the proposed
method can identify several streams of requests orig-
inating from a single or multiple applications.

• We introduce RC-RNN, the first I/O caching archi-
tecture capable of employing machine learning meth-
ods to decide which data pages should be placed in
or evicted from the cache in a dynamic priority-based
caching policy. RC-RNN constructs a model from an
optimal cache policy and employs it in the runtime
to decide suitable cache operations for the running
workload.

• To improve the accuracy of the machine learning
model employed in RC-RNN, we propose a cost
function that considers the characteristics of SSDs
as compared to HDDs to estimate the actual cost of
caching, by-passing, or evicting a data page.

• RC-RNN monitors the running workload using the
constructed RNN model for workload characteriza-
tion, where once a change in the workload is de-
tected, the employed RNN model for cache policy
is dynamically changed. The performance impact of
the reconfiguration process is kept as minimum as
possible.

• We implement RC-RNN in a real system and show
that the proposed architecture improves cache hit ra-
tio up to 7x (2x on average) with negligable overhead
during online phase compared to previous work.

The rest of the paper is organized as follows. In Section 2,
the background and previous studies are presented. Section
3 discusses motivations of this paper. In Section 4, the
proposed architecture is detailed. Experimental results are
presented in Section 5. Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORKS

In this section, we first discuss emergence of new tech-
nologies for storage devices and the motivations to employ
heterogeneous hybrid architectures. Next, the suggested hy-
brid architectures in previous studies are detailed. Current
I/O workload characterization methods are also discussed
in this section. Finally, a summary of machine learning
methods, applicable to I/O caching is provided.

2.1 Hybrid Architectures

With emergence of SSDs having performance advantages
over mechanical HDDs, the average response time of stor-
age devices has been decreased significantly. However, the
higher price of SSDs compared to HDDs and limited lifetime
prevents data centers to completely replace HDD-based
storage subsystems with SSDs.

Multi-tiered storage subsystems have been suggested by
previous studies to exploit the advantages of both mechan-
ical and non-mechanical storage devices [4], [5], [6], [7], [8],
[9], [10], [18], [19]. There are two main approaches in hybrid
storage systems: (1) Tiering and (2) Caching. In tiering, SSD
is placed at the same level as HDD and the overall capacity
of the system is equal to sum of the space of both devices
[18], [19]. Contrary to tiering, in caching a copy of data page
is moved to SSD to speed up I/O requests. Tiering is more
efficient in terms of overall cost and capacity compared to
caching, but due to costly data migration between tiers, it
has lower performance during abrupt workload changes.
Therefore, tiering is more suitable for systems with steady
workloads [20], [21]. On the other hand, a caching approach
achieves higher performance in workloads with sudden
changes, which makes them efficient on systems running
simultaneous workloads.

In this paper, we focus on caching since it is capable
of responding faster to workload changes. Due to the un-
predictable and non-linear behavior of I/O workloads, the
performance of an SSD-based caching approach highly de-
pends on the caching algorithm. Using an inefficient caching
algorithm not only degrades performance, it also shortens
SSD lifetime because of the unnecessary cache replacements.
To achieve efficient caching management, it is necessary
to predict behavior of workload and be able to configure
caching architecture based on the access pattern. In addition,
in case of workload change, previously configured caching
algorithm may not be efficient any more. Hence, it is impor-
tant to have a reconfigurable architecture, which can adapt
to rapid changes in the workload.

2.2 Previous Hybrid Architecture

There are numerous studies in SSD-based caching for stor-
age systems [4], [5], [6], [7], [8], [9], [10], [22]. Most of
these studies suggest simple and linear caching algorithms
based on conventional algorithms such as Least Recently
Used (LRU) or Access Frequency that have shown to be
practical and efficient in other levels of memory hierarchy
such as CPU caches. Although LRU has low overhead,
certain workloads can cause cache thrashing [3], [23] and
significantly decrease its efficiency.

Previous studies that use LRU as their baseline caching
algorithm tried to overcome this problem with various
approaches. ARC [4] employs two lists to keep track of
recency and frequency of accessed I/O blocks. It buffers
a percentage of each list based on the hit ratio in the
recent accesses and keeps balance between blocks that have
been accessed recently and blocks, which have been mostly
accessed during the workload. LARC [5] employs a virtual
LRU queue as a filter for recently accessed blocks and
prevents randomly accessed blocks from entering cache
in the first access. If a block is accessed for the second

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (TETC) 4

time while in filter, it gets promoted to the main LRU and
will be buffered. With this approach, LARC prevents cache
thrashing and significantly decreases cache replacements
compared to LRU. mARC [6] benefits from both previous
architectures in different phases of the workload. It uses
hit ratio, recency, and frequency as feedback to switch
between two methods. Although the mentioned studies
have improved SSD caching performance in few workloads,
they still have low performance in other workload types. In
addition, the number of unnecessary cache replacements is
still high in such architectures.

In addition to modifying LRU, using access frequency
has also been suggested in the previous studies [7], [8]. In
[7], a caching architecture called Azor is suggested, which
is an access frequency cache that assigns metadata blocks
a higher priority over data blocks. This architecture will be
effective only for workloads with high percentage of meta-
data accesses. In case of workload change, older metadata
blocks, which are not performance critical anymore, will be
kept in cache and prevent performance critical pages from
entering the cache. Hystor [8] proposes a hybrid storage
architecture consists of both SSD and HDD to improve
the overall performance. One of the drawbacks of hystor
is allocating a fixed section of SSD as a writeback buffer
for HDD subsystem, which can be either too large or too
small for certain workloads. The size of the write-back cache
significantly affects the performance of running workloads.

2.3 Workload Characterization

The performance of caching architectures in storage systems
is highly affected by the characteristics of the running
workload. Therefore, workload analysis plays a key role
in studies aimed at improving performance of I/O sub-
systems. The behavior of enterprise application workloads
is very complex and difficult to characterize because the
performance of each request depends on the previous ones.
The non-linear behavior of I/O workloads and burstiness of
requests [3], [24] add to the complexity of characterization.

To understand the I/O workload characteristics, several
previous studies have proposed different analytical models
for analyzing enterprise I/O traces [25], [26], [27], [28], [29].
Read/write ratio, I/O size, and inter-arrival times are a few of
the common parameters employed in previous studies for
workload characterization. In [25], spatial locality and out-
standing I/Os are considered in characterization of work-
loads for HDD-based storage systems. In [28], workloads are
divided into three major domains: enterprise, desktop, and
consumer electronics. This work shows that burstiness as a
temporal locality measure is highly application dependent
and significantly affects the overall workload performance.
In [29], six different web servers are characterized in detail
and two proposed caching strategies for web caches are ob-
tained through data analysis. Although several parameters
such as read/write ratio, I/O size, temporal and spatial localities,
and burstiness have been examined in previous studies, they
still cannot predict the I/O workload behavior with high
accuracy. As we show in Section 3.2, this is due to the long
dependency of requests to previous requests, which cannot
be captured by state-of-the-art characterization methods.

2.4 Machine Learning - RNN
In recent years, artificial intelligence has been extensively
used in a broad range of applications such as multimedia
signal processing (e.g., image, video and speech processing),
intelligent systems (e.g., autonomous cars and smart homes)
and bio-informatics (e.g., DNA analysis) [15], [16], [30],
[31]. Such applications need complicated analysis of large
volume of data, which is usually achieved by machine learn-
ing methods that recognize the complex implicit patterns
of the data and use it for future prediction. In general,
building a machine learning model has two phases: training
and testing. In the training phase, which is done offline,
a large volume of training data is analyzed to solve an
optimization problem for learning a model. In the test phase,
the trained model is used to predict features of unseen new
data. Among machine learning methods, Deep Learning has
made great progress in recent years and has achieved state-
of-the-art results in many problems [15], [16], [31]. Deep
Convolutional Neural Networks (CNNs) and deep Recurrent
Neural Networks (RNNs) are the most useful architectures
in this field. The former is used to analyze image data and
the latter is employed for sequential data analysis such as
text and time series data [32]. We are going to use RNNs in
this paper.

RNN attempts to model a nonlinear dynamical system
with input x(t), inner state s(t), and output y(t). As an
example in data storage systems, the input data x(t) can
be considered as a request at time t from an I/O workload
trace and y(t) indicates the caching mechanism suitable for
individual requests. In this scenario, the state s(t) plays the
role of the memory and tries to summarize all of the past
events (x(1); :::; x(t � 1)). RNN implements the following
scenario in a recursive manner: 1) take the new input data,
2) check the previous state, 3) mix them together to build
the current state, and finally 4) make the new output by
manipulating the current state:

s(t) = f(s(t � 1); x(t))

y(t) = g(s(t)) (1)

In order to model the non-linearity of the system, f and
g are usually obtained by combining a linear transforma-
tion and a simple nonlinear function, e.g., sigmoid. Since
RNNs, unlike feed-forward neural networks, can use their
internal memory to process arbitrary sequences of inputs,
they are more suitable for analyzing I/O traces. In RNNs,
connections between the nodes form a directed cycle to
imitate a dynamic temporal behavior. RNNs can use their
internal memory to process arbitrary sequences with input,
inner state, and output layers. A simple RNN with one
hidden layer as the inner state takes the sequential input
and updates its current state based on the current input
and previous state. The inner state plays the role of the
memory and tries to summarize the input data. The output
which could be the result of classification or regression, is
produced by manipulating the state of the system. Since
natural dynamical systems are non-linear, RNN also uses
simple nonlinear functions such as sigmoid, tanh, or max, and
builds a complex non-linear function by combining them
[30]. A schematic of a simple RNN is shown in Figure 2a.
Equation 2 shows the relation between input (x), state (s),

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (TETC) 5

S

X

W

O

V

U

St-1

Xt-1

W

Ot-1

V

U

St

Xt

Ot

V

U

WW

Unfold

(a) Simple RNN

S1

X

O

S2

S3

V

W1

W2

W3

V1

V2

V3

(b) Deep
RNN

Fig. 2: Different RNN Architectures [15]

and output (u) of a typical RNN. Where g and f are the non-
linear functions (in classification, common choices for these
functions are the rectifier linear unit and softmax function),
and A, B, and C are the weights, which should be learned
during the training process.

s(t) = f(A:s(t � 1) + B:x(t)); u(t) = g(C:s(t)) (2)

For training RNNs, we should first prepare suitable
training datasets, which consist of sufficient input se-
quences with their correct ground truth label. The training is
achieved by using an efficient implementation of Stochastic
Gradient Descent (SGD) algorithm, called back propagation
through time. We obtain the best estimates for the weights
through the training process, but the model should be
evaluated by using test datasets. Different challenges, e.g.
vanishing and exploding gradients, might be raised during
the training of a simple RNN. These challenges can be
resolved by using a special kind of memory unit called
Long Short Term Memory (LSTM) [33] in the RNN architec-
ture. LSTM defines the inner state with a more complex
process, with input, output, and forget gate. The details
of this memory unit can be found in [33]. Increasing the
number of hidden layers and building a deep RNN is an
important generalization of RNN, which can handle more
complex data patterns at the cost of more time and memory
consuming training process. Figure 2 shows the schematic
of a simple RNN (Figure 2a) and a 3-layered deep RNN
(Figure 2b), respectively.

RNN models are mostly used on one dimensional
datasets. However, RNN can also be employed on multi-
dimensional datasets by feeding d-dimensional vector (e.g.
[addr, size, ...]) at each time step as shown in several previ-
ous studies such as [34]. RC-RNN uses the same technique
to feed the multi-dimensional dataset to the RNN model.
For instance, we use a 100*4 matrix for 100 consecutive time
steps to classify the characteristics of the workload based on
four different dimentions.

3 MOTIVATION

The motivation for this work is three-fold. First, we show the
gap between state-of-the-art and optimal (Oracle) caching
architectures in terms of performance and SSD endurance.
Second, we demonstrate the inaccuracy of previous work-
load characterization methods in several scenarios. Finally,
we present several examples of the potential benefits of

employing machine learning in both I/O workload char-
acterization and SSD-based I/O cache management.

3.1 Cache Management

To evaluate the efficiency of caching architectures, hit ratio
should be compared to the hit ratio of Oracle caching ar-
chitecture, which is proven to have the maximum possible
hit ratio due to having the knowledge about all future
accesses [13]. Figure 1a shows the hit ratio of three different
algorithms: 1) LRU, 2) Access [7], and 3) LARC [5], compared
to Oracle. The hit ratio gap between Oracle and state-of-
the-art algorithms is up to 7x. This gap highly depends on
the workload reuse distance and access pattern. Previous
studies rely on such characteristics of workloads to identify
hot data pages. In workloads with low localities, previous
studies fail to predict which data pages will be re-referenced.

In addition to the hit ratio, the number of cache re-
placements is also an important factor in SSD-based caching
architectures. Cache replacements require a write operation
on the SSD to copy the data page to the cache. Such write
operations significantly decrease SSD lifetime and therefore,
should be minimized. Figure 1b depicts the number of
cache replacements for the same set of workloads as the
previous experiment. As shown in this figure, LARC has the
lowest number of cache replacements among state-of-the-
art caching architectures. This is due to its two-level LRU,
which prevents seldom accessed data pages from entering
the cache. Oracle has up to 13x less cache replacements
compared to LARC. Under cambridge workload [35], where
accesses have long reuse distance, previous methods such
as LARC fail to capture the relation between requests while
most of the performance-critical blocks are evicted from the
cache before they are accessed again. This results in signifi-
cant hit ratio degradation compared to Oracle. On the other
hand, frequent swaps between blocks in the cache results in
more cache replacements compared to the Oracle caching
architecture. The significant gap between the Oracle and
state-of-the-art cache architectures in terms of hit ratio and
cache replacements reveal that caching architectures still
can be significantly improved by employing more complex
policies.

3.2 Workload Characterization

In order to evaluate the accuracy of previously proposed
characterization methods, three widely used characteriza-
tion methods including a) Temporal Working Set Distribution
(TWSD) [12], b) Frequency [7], [8], and c) IOSize [5] have
been implemented and examined. IOSize characterizes re-
quests based on their size. In Frequency, requests are char-
acterized based on the access frequency, type (read/write),
and size. TWSD method, which is the most detailed analysis
on these three parameters (access frequency, type, and size),
divides I/O requests into four types strided, sequential, ran-
dom, and overlapped and takes the dependency of requests
into account. A request is considered sequential, if its size
exceeds a threshold or it starts (ends) at the end (start) of
one of previous requests. Strided denotes requests with a
small gap from previously accessed blocks. In addition, if
a request overlaps with previous requests, it is flagged as

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (TETC) 6

TABLE 1: Storage System Workload Scenarios

Scenario Workloads

Single Purpose Server Radius Auth
mail index

Virtualization Server
home ikki

Radius Auth
mail index

Storage System

enterprise tpc 1
home ikki

Radius Auth
mail index

overlapped. Finally, if a request does not meet any of the
mentioned conditions, it will be flagged as random.

To evaluate the accuracy of the workload characteriza-
tion methods, they are fed into an RNN model constructor
as the main cost function. To be able to compare different
workload characterization methods, we divide workload
traces into two separate phases: learning and evaluation.
During learning phase, each method collects the required in-
formation from more than 16 trace files, each having at least
60,000 requests. Extracted information from the trace and
the workload type are given to machine learning classifier
model constructor to build a model for each workload char-
acterization method. In the evaluation phase, each workload
characterization method is tested 100 times, where each test
consists of 100 requests. The accuracy is calculated by the
number of correct workload identifications.

To simulate various storage servers with different work-
load complexities, three scenarios are designed using I/O
traces from SNIA [14]. Table 1 shows the three scenarios for
the workloads. In order to see the results of introducing
one additional workload to a system, we decide to keep
previous workloads exactly in later scenarios. Therefore,
the reduced accuracy of characterization methods would
not depend on the modified workload types. This experi-
ment indicates the impact of additional workloads on the
accuracy of characterization. Single Purpose Server data set
emulates an email server by running an authentication
application and an email server. Virtualization Server runs
three independent applications to emulate a server running
several virtual machines. Finally, the last test data set (Stor-
age System) emulates a storage system by running several
applications each having a separate filesystem.

The goal of a characterization method is to find the type
of running workload that the given set of I/Os belong to.
To this end, the accuracy of characterization methods is
calculated by the ratio of correct decisions of workload type
over time, while workload types change periodically. For
instance, in single purpose scenario, characterization methods
must only differentiate between two workload types (Ra-
dius auth or mail index). Given one hundred requests from
a workload, the characterizer must decide which of the
workload types are more likely to have generated the given
hundred requests.

Figure 3 shows the accuracy of the workload characteri-
zation methods on test data sets. TWSD and Frequency have
high accuracy when only one application is running. By in-
creasing the number of running applications, the accuracy is
reduced significantly. The highest accuracy in the third test
data set is 60%. This experiment reveals that the workload
characterization methods fail to accurately predict workload

 40

 50

 60

 70

 80

 90

 100

Single Purpose
 Server			

Virtualization
 Server	

Storage
 System		

A
c

c
u

ra
c

y
 (

%
)

TWSD Freq. IOSize

Fig. 3: Accuracy of Previous Workload Characterization
Methods

when multiple applications are running. Therefore, more
complex methods need be employed to reach high accuracy
in workload characterization.

3.3 Exploiting Machine Learning Methods

Machine learning algorithms have shown to be successful
in identifying complex data patterns in many domains
by providing methods such as classification, regression,
and clustering [15], [16], [30], [31], [32]. In addition, deep
learning approaches such as RNNs are in general more
accurate and more effective than the heuristics approaches
that are currently employed in the caching management
systems throughout the memory and I/O stack. However,
such machine learning approaches require few hundreds
of microseconds for processing. The average latency of
I/O requests is few milliseconds, which can tolerate such
additional processing time. However, main memory and
CPU cache levels have less than one hundred nanosec-
onds latency, and therefore, cannot use machine learning
approaches with such a relatively high latency.

SSD caching, on the other hand, can benefit from ma-
chine learning and specially RNNs. This is due to three
main reasons: 1) the significant gap between state-of-the-
art architectures and Oracle, 2) RNNs as one of the most
accurate discriminative classifiers for sequences with time
dependency, and 3) the average response time of several
milliseconds in I/O requests. Thus, RNNs can be employed
to detect complex temporal and spatial localities of I/O
workloads. We note that the average response time of I/O
requests in this layer (several milliseconds) is sufficient
for processing different RNN modules using only CPU.
Moreover, other parameters such as request size and type
(read/write) can be employed to further improve the ac-
curacy of such methods by defining n-dimensional neural
vectors [34]. Therefore, RNNs can be used for identifying
patterns in long sequences with similar characteristics to
I/O requests. Employing RNNs with LSTM [33] units can
enable us to efficiently analyze long I/O workload traces.
We can conclude here that I/O traces are suitable input
for several machine learning methods such as RNN and
the runtime computation overheads (as our experiments
indicate) do not have a significant effect on the overall
performance.

Several studies have employed machine learning tech-
niques in different levels of system hierarchy. C-Miner
[36] is a prefetching method for sequential prefetching in
storage systems. This method aims to provide faster I/O

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (TETC) 7

transactions between operating system and the backend
storage system by considering the frequent subsequences in
the blocks and pre-fetching them to the memory. This is or-
thogonal to RC-RNN that decides which data pages should
be moved to the SSD after they are accessed. Additionally,
the patterns that RNN can identify in the workload are not
discoverable by simple mining methods such as frequent
subsequences that can only identify linear correlations, while
I/O accesses have non-linear correlations. Therefore, more
complex machine learning approaches such as RNN should
be employed to identify patterns in the I/O workloads.

4 PROPOSED ARCHITECTURE

To mitigate the shortcomings of previous studies in terms
of providing high hit ratio and SSD lifetime, we propose
RC-RNN, the first reconfigurable SSD-based I/O caching ar-
chitecture employing RNN models. RC-RNN employs two
RNN models: a) a single-layer RNN model for classification
of the running workload and matching its characteristics
to one of the predefined workload categories, and b) a
deep three-layer RNN model, called caching model, to de-
cide which data pages should be copied to/evicted from
the cache. For each workload category, a separate caching
RNN model is constructed, which is optimized toward the
requirements of that specific workload type. Since construct-
ing RNN models is rather time-consuming, RC-RNN is
divided into offline and online phases. The offline phase is
executed once for the entire lifetime of the system while
the online phase monitors the I/O requests in the runtime.
In the offline phase, RC-RNN constructs the required RNN
models by analyzing a wide range of the workload traces
from several enterprise applications. The fully built RNN
models are later used in online phase to monitor workload
and control the cache in real-time. During online phase, the
ongoing workload is periodically characterized to identify
the workload type. Based on the identified workload type,
the corresponding RNN model is employed for cache man-
agement. Fig. 4 shows the detailed architecture and data
flow of offline and online phases. In the remainder of this
section, offline and online phases are detailed.

4.1 Offline Phase
The offline phase is responsible for a) providing an RNN
model for identifying workload type, and b) providing a
cache management RNN model for each workload type.
To identify workload types, a collection of I/O traces from
SNIA [14] and filebench [37] are examined and classified into
four main workload categories: a) Mail Server, b) Web Server,
c) Database, and d) File Server. The classification is based on
the general trace categories in SNIA. As shown in Figure 4,
all workload traces and their corresponding type are fed
into the RNN constructor in a supervised manner 1 to build
a model for identifying workload type based on the I/O
access pattern.

The characterization method in RC-RNN is based on
the deep learning model. The characterization model learns
the difference of given workloads in a supervised manner
during the offline phase. Then, during online phase (where
evaluations are performed), the model decides which type
of workload is more likely to have generated the requests in
a given period of time.

H
D

D

Response Time
Analysis
Module

Traces

SSD/HDD

Te
st

Oracle

Cache
Models

Cache
Simulator

RNN

Workload

Characterization

Per I/O

Function

Optimum

Caching

Classification
Model

RNN

Cache Manager

Workload
Server

Model

Knowledge

Offline Online

Workload

Config. Manager

Monitoring

SS
D

Config

Stat

2
3

4

5

6

1 7

8

9

Fig. 4: Overall Two-phase Architecture Flow

To construct RNN models for cache management, we
need to label all requests by the decision of the Oracle.
The traditional Oracle algorithm only considers the accesses
to data pages in its cost function. Due to the asymmetric
performance of SSDs in read/write requests and also signif-
icant difference between sequential/random performance of
HDDs, such algorithm might not result in the optimal cache
decisions. Therefore, we propose a benefit function, which
can accurately estimate the benefit of caching data pages
based on the several request characteristics.

Moreover, 2 all of the traces are replied on real hard-
ware (both SSD and HDD) to obtain the response time of
the requests for each workload. The results are analyzed in
Analysis Module 3 to calculate cost/benefit of caching each
data page based on the access pattern. In addition to the
response time of requests, read/write ratio and frequency
of accesses to data pages are also considered in the benefit
function. The employed benefit formula for building RNN
models of cache management is presented in Equation 3.

As mentioned earlier in Section 1, the performance of
SSDs is highly depended on I/O request type [3]. In or-
der to use the most detailed SSD characterization analysis
results, we employ priority-based caching mechanism with
the benefit function (equation 3) to assign priorities to I/O
requests. Therefore, requests with higher benefit will have
higher chance of being cached by the system. THDD and
TSSD denote HDD and SSD response times for a request,
respectively. Requests having wider gap between SSD and
HDD response times will benefit more from entering the
cache and therefore, will be assigned higher priority. Since
requests with smaller sizes occupy less space in cache
and larger requests have acceptable performance on HDDs,
smaller requests assigned higher benefit by 1

ReqSize
factor.

Benefit =
THDD

TSSD
�(Nacc�1)� 1

Reqsize
�(1+

Nreads

Nacc
) (3)

Improving read hit ratio reduces the number of data
pages copied to the cache and therefore, reduces the number
of writes in the SSD that increases SSD lifetime. Moreover,
SSDs provide higher performance in read requests contrary
to HDDs, which have almost identical performance on read
and write requests [5]. Therefore, benefit of caching read-
intensive data pages should be higher than write-intensive
data pages. To this end, the read ratio of accesses to the data
page (1 + Nreads

Nacc
) is also considered in the benefit function.

In addition to improving performance, prioritizing caching

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (TETC) 8

of read-intensive data pages also improves SSD lifetime by
reducing the number of writes in the SSD.

Oracle Cache 4 replays the trace file and for each access
compares the benefit of caching a newly accessed data page
with residing data pages in the cache. If the newly accessed
data page has higher benefit, it replaces the data page with
lowest benefit value in the cache. Cache Simulator 5 is a
simple cache, which manages the data structures for the
cache based on the decisions of the Oracle Cache. For each
access, Cache Simulator adds two tags to the access in the
trace file: a) cached and b) duration. The cached tag denotes
that whether or not Oracle decided to place the data page in
the cache. The duration tag denotes the number of accesses
between entering a data page to the cache and replacing it
with another data page. The value of duration depends on
the cache size. Since our RNN models need to be cache-size
independent, the actual value of duration is replaced with
one of the three values reported in Table 2.

The boundaries are selected based on the empirical stud-
ies and in such a way, three groups are almost uniformly
populated. A three-level RNN model 6 learns the behavior
of the Oracle by analyzing the tagged trace files created by
Cache Simulator. Four RNN models are constructed, one for
each workload category. The output models are saved to be
used later by the online phase of RC-RNN.

4.2 Online Phase

The RNN module tries to classify and distinguish four
workload types by the five values provided for each I/O
request. As shown in previous works such as [3], [12], [24],
the history of I/O accesses can be employed to predict
the I/O behavior of applications. Deep learning is able to
identify the patterns in I/O workloads and its processing
time is relatively small [38]. Hence, in this work we use deep
learning to find the patterns in I/O workloads and decide
the cache policy based on such information.

Workload Monitoring 7 employs the RNN model for
workload characterization and identifies the running work-
load type. While the system is running, Workload Monitoring
is invoked once a minute. It captures 1000 I/O requests
and runs accesses through the RNN model for identifying
workload type. If a change in the workload type is detected,
Workload Monitoring replaces the current RNN model for
cache management with RNN model of the new workload
type. The process of identifying workload type is done
asynchronously to prevent any delay in responding to I/O
accesses.

Configuration Manager 8 is responsible for reconfiguring
the cache when a change in the workload is identified
by Workload Monitoring. The reconfiguration process upon
workload change consists of two stages, a) loading new
RNN model, and b) re-evaluating benefit values of data
pages in the cache based on the new configuration. The
reconfiguration process has very low overhead in terms of
time and memory. All cache models are generated during
offline phase and the Configuration Manager only switches
between models during workload change and responds to
the newly arrived I/O requests using the loaded model. All
models have the same computation time, which is less than
one millisecond for each access, on average. On multi-core

TABLE 2: Reclaiming Labels

Label Duration Areas
soon duration < Cache Size
mean Cache Size < duration < 5× Cache Size
late 5× Cache Size < duration

Block I/O Layer

SS
D

H
D

DM
M

i
1

Monitoring

Cache Manager

Select

bio

Control

Miss

Hit

Lookup

File System

Fig. 5: Online Phase Architecture

CPUs, computation for I/O requests can be done simulta-
neously. The average size of RNN models is less than 40
megabytes. Note that the memory requirements of baseline
SSD caching is about 0.2% of the entire SSD capacity. For a
sample SSD size of 1 TB, the baseline SSD caching requires
at least 2 GB of memory. Therefore, the memory overhead
of RC-RNN model is negligible. Therefore, all models can
be loaded into the main memory during the cache startup.
However, if the memory demand becomes significantly
high, parts of lesser used RNN models can be swapped out
by the virtual memory management of the OS.

Figure 5 shows the overall architecture of the imple-
mented module for online phase of RC-RNN. Lookup module
maintains a list of data pages in cache and redirects hit
accesses to the SSD. Miss accesses are sent to the Cache
manager to decide whether or not it should be cached. If the
cache does not have any free space left, the cache manager
decides which data pages should be evicted. The Lookup
module handles all required I/O requests for moving data
pages from/to the cache. The Monitoring module identifies
current workload type and loads the corresponding RNN
model into the Cache manager.

Cache manager 9 employs currently selected RNN
model to decide a) whether or not to buffer the missed
access, and b) which data page should be evicted when
cache is full. Fig. 6 shows the overall flow of decisions
made by Cache manager based on the outputs of Oracle.
The output of RNN model for each access directly states
that the request should be buffered or not. The eviction
of data pages, however, requires additional process by the
cache manager since RNN model only labels eviction time
of requests as soon, mean, or late. To decide which pages
should be evicted, RC-RNN maintains an LRU queue for
each label and places requests in their corresponding queue.
On hit accesses, the requested data page will be moved
to the head of its current queue. Data pages are demoted
to lower priority queues when 5 � cachesize requests are
processed after entrance of data pages to the cache. Data
pages in the mean and late queues are demoted to soon and
mean queues, respectively. To prevent demoting hot data

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (TETC) 9

cache Rec: 100

ignore Rec: -----

cache Rec: 280

Req i Time i Addr i Size i

Req i+1 Time i+1 Addr i+1 Size i+1

Req i+2 Time i+2 Addr i+2 Size i+2

Type i

Type i+1

Type i+2

 Oracle

RNN

35839 6

8287343 1

R

W

Cache Models3456 32 WS

Output

cache Rec: soon

cache Rec: late

ignore Rec: ----

Offline

Online

Fig. 6: Proposed Architecture and Dataflow for RC-RNN

pages, if a data page resides in top 20% of the queue, it will
not be demoted. The victim for eviction will be the last data
page in the soon queue. If the soon queue is empty, the mean
and late queues will be searched, respectively. I/O caching
architectures (unlike CPU caches or virtual memory) do not
need to copy each missed access to the cache and therefore,
can bypass the cache and directly supplied by HDD. This
option enables RC-RNN to prevent seldom accessed data
pages from entering the cache.

Regarding general limitations of RNN such as the num-
ber of distinguishable classes, we note that RC-RNN does
not try to predict the address of the upcoming requests. Dur-
ing online workload characterization, RC-RNN predicts the
workload category (e.g., Mail Server or File Server) based
on the workload behavior. The number of such categories
is limited and at most four categories have been identified
in previous studies [3], [12], [24]. Moreover, based on the
selected workload type, each I/O request is classified by a
binary classification (to buffer or not to buffer) and if the
model decides to buffer the data page, we use a further 3-
class classification (soon, mean, and late). Therefore, RC-RNN
does not need to have a separate category for each data page
and the limitation of RNN in the number of categories does
not affect RC-RNN.

5 EXPERIMENTAL RESULTS

In this section, first the detailed experimental setup for
implementing and evaluating RC-RNN is presented. Next,
experimental results regarding tuning RNN models for both
workload characterization and cache management are pro-
vided. We offer two scenarios for evaluation of RC-RNN:
1) static workloads and 2) reconfiguration process. During
each scenario, the accuracy of workload characterization
model is evaluated. Afterwards, the proposed cache man-
agement model is compared to previous studies in terms of
hit ratio and SSD lifetime. Finally, the impact of reconfig-
uration process is discussed while system is benchmarked
under multiple workloads.

5.1 Experimental Setup

TABLE 3: Experimental Setup

Device Model
CPU Core-i7 7500HQ

Memory 16 GB DDR3
HDD 2 TB Western Digital Red Pro HDD
SSD 512 GB Samsung SSD 850 PRO
GPU NVIDIA TITAN X (Only used during offline phase)

RC-RNN is implemented as a kernel module based on En-
hanceIO [39] in Linux Kernel 4.4.0. A user-space application
receives requests from kernel module, feeds them to the
RNN model, and sends back the result to the kernel module.
RNN models in the offline phase are constructed by Keras
[17] library and RMSProp [40] optimizer with the default
configurations. We consider two main hyperparameters to
construct RNN models: a) number of hidden units, and b)
I/O sequence window length. A system with 12 GB main
memory with a NVIDIA Titan X GPU running Ubuntu 16.04
has been employed for constructing RNN models. Oracle
algorithm is implemented as a C++ module in an in-house
cache simulator1. The complete log of the decisions made by
Oracle for every I/O request is stored to be used as an input
for three-level deep RNN model, which is shown in Figure 6.

Table 3 presents the complete experimental setup for
both offline and online phases of our evaluations. Note
that the GPU is only utilized once and only in the offline
phase. In the experiments, the entire online evaluation is
evaluated using only CPU. The online phase of RC-RNN in
the experimental results uses the same hardware as LRU
and LARC under all the workloads. In all experiments, the
size of the SSD is set to 20% of the working set size of the
workload. Table 4 shows the number of requests, read/write
ratio, and the average request size of traces.

We note that the offline phase is not dependent to the
running workload. Therefore, as long as the overall hard-
ware employed remains the same, we can reuse the results
of the offline phase. In case of a hardware change, the offline
phase needs to be executed only once before the start of
the online phase. In our experiments, the offline phase is
executed for three hours and all the experimental results
are captured during the online phase. The results of online
monitoring can be used as input traces for the offline phase.
This is an asynchronous operation and does not affect the
performance of the online phase. Although giving feedback
from the online phase to the offline phase can result in more
accuracy, it was not included in the results to have a fair
comparison with previous architectures.

5.2 RNN Configuration

The linear relation among I/Os has been extensively stud-
ied by the previous work, such as [3], [12], [24]. In this
paper, we aim to achieve higher accuracy in classifying
the sequential data of I/Os by investigating the non-linear
correlation in storage workloads. To this end, we used
Recurrent Neural Networks (RNN) that are designed to model
sequential data. A usual RNN has a short-term memory, but
in combination with Long Short Term Memory (LSTM), it will
support a long-term memory. Moreover, different logistic
activation functions, such as Softmax, tanh and ReLU can be

1. The source code of simulator and RNN models will be publicly
available upon acceptance of the paper.

