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ABSTRACT

The availability of non-volatile main memory (NVMM) has started
a new era for storage systems and NVMM specific file systems
can support extremely high data and metadata rates, which are
required by many HPC and data-intensive applications. Scaling
metadata performance within NVMM file systems is nevertheless
often restricted by the Linux kernel storage stack, while simply
moving metadata management to the user space can compromise
security or flexibility.

This paper introduces Simurgh, a hardware-assisted user space
file system with decentralized metadata management that allows
secure metadata updates from within user space. Simurgh guar-
antees consistency, durability, and ordering of updates without
sacrificing scalability. Security is enforced by only allowing NVMM
access from protected user space functions, which can be imple-
mented through two proposed instructions. Comparisons with
other NVMM file systems show that Simurgh improves metadata
performance up to 18x and application performance up to 89%
compared to the second-fastest file system.

CCS CONCEPTS

« Information systems — Storage class memory; Phase change
memory; - Software and its engineering — File systems man-
agement.
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1 INTRODUCTION

Non-volatile main memory (NVMM) technologies combine the per-
sistence of traditional storage devices with the byte addressability
and performance of dynamic random-access memory (DRAM). This
blurs the line between memory and storage and changes how soft-
ware and storage systems are developed [17, 22, 56, 69]. The recent
commercial availability of Intel Optane DC persistent memory now

enables the wide-spread adoption of NVMM in different layers of
the memory and storage hierarchy [7, 15, 30, 32, 33, 43, 48, 57, 77].
There are several NVMM use cases in HPC. Large capacities and
low power consumption of NVMM, e.g., provide the opportunity
for HPC applications to store their local datasets and checkpoints
at lower cost compared to DRAM and at higher speed compared
to SSDs [24, 66, 74]. The persistency of NVMM furthermore allows
the fast initialization of in-memory indexing data structures [37].
Additionally, many distributed systems and HPC file systems use
local file systems as their storage backend and can therefore directly
benefit from the performance of NVMM [1, 9, 10, 14, 54].
File systems have also been one of the first targets to be adapted
to NVMM, as enabling file systems to efficiently use NVMM im-
mediately offers performance benefits to many applications. For
decades, file systems have been implemented inside the operating
system (OS) under the assumption that storage devices are slow
compared to DRAM and that it is beneficial to implement com-
plex optimizations inside the storage software stack to minimize
accesses to the storage devices. NVMM completely changes this
assumption, and optimizations like buffering data in a DRAM page
cache are bypassed by NVMM file systems to, e.g., avoid costly
extra data copies between NVMM and DRAM [25, 29, 79].
Additionally, the OS and its software stack complexity have be-
come a significant overhead when applied to NVMM. Inefficiencies
of kernel file systems in Linux result, e.g., from syscalls and the
generality of the virtual file system (VFS) layer. The VFS overhead
is mainly due to updating file system structures, copying between
user and kernel internal structures, low scalability, locking issues,
and namespace management [41, 50]. Poor metadata performance,
especially in shared directories and scalability of local file systems,
are known to be a major bottleneck in distributed systems [1].
The costly interaction with the kernel can be minimized for the
data path by manually or semi-automatically transforming applica-
tions to use memory-mapped I/O [21, 49] or by providing preload-
ing libraries to directly access data [19, 39]. However, providing
metadata scalability by removing the kernel from a file system’s
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control path is more challenging, as the control path typically relies
on the kernel to enforce security. Previous approaches to imple-
ment the corresponding metadata management in user space either
use a central user space metadata server, including additional se-
rialization efforts [45, 68], or map parts of the NVMM space into
the applications’ address spaces. The second approach allows to
fully scale file system performance in the number of processes,
while known implementations restrict security to coarse-grained
permission settings [28].

In this paper, we propose Simurgh!, a user space file system to
fully exploit the performance benefits of NVMM while ensuring
security and isolation equal to traditional file systems. Simurgh
maps NVMM into the address space of each application and does
not duplicate data or metadata by caching it in DRAM. All metadata
structures can be concurrently accessed and modified by otherwise
independent processes. Simurgh is stand-alone and does not depend
on another underlying file system.

Security is enforced via a proposed extension to the CPU instruc-
tion set architecture (ISA) that enables the secure execution of user
space functions in privileged mode. The protected functions are
implemented through two new instructions, jmpp (jump protected)
and pret (protected return). Jump protected temporarily changes
the processor’s privilege level from running in user space to kernel
space upon calling the protected functions. In contrast to a syscall,
jmpp does not induce the overhead of the kernel’s dispatching table
and successfully works with the CPU’s jump predictor.

After its initial loading, Simurgh does not require any further OS
involvement. All changes to data, metadata, and file mappings are
supervised by Simurgh and require the use of protected functions.
As a result, an application cannot read or write data and metadata
without proper access permissions.

We emulated the new security mechanisms in the gem5 simu-
lator [6] and show that the time to perform protected functions is
close to a standard function call and 6x faster than an empty syscall.
We then evaluated Simurgh using synthetic benchmarks and real-
world applications on an Intel x86 server equipped with Optane
NVMM by adding the measured overhead of protected function
calls to file system operations. Simurgh provides up to 18x higher
metadata performance compared to previous file systems, while
applications can benefit from speedups of up to 89%.

In summary, the paper makes the following contributions:

e We propose a new security mechanism that enables pro-
tected functions in user space without any performance
overheads compared to system calls. Support for protected
functions only requires small changes to the CPU ISA and its
page table design. Protected functions are not limited to file
systems and can have broad applications, e.g., in microkernel
operating systems.

e We present Simurgh, an NVMM file system completely im-
plemented as a preloading library in user space. It avoids OS
traps and synchronous interprocess communication (IPC) for
data and metadata operations. Kernel involvement is limited
to the startup of an application.

!Simurgh is a bird in Persian mythology that represents the union between the earth
and the sky and acts as a mediator between the two.
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App Application Data Copy File System
YCSB LoadA 27.02% 18.18% 54.62%
Tar Pack 8.29% 35.82% 55.89%
Git Commit 32.81% 0.45% 66.29%

Table 1: Breakdown of execution times for NOVA

e Simurgh forms a decentralized system, as the preloading
libraries of concurrently running applications are only coor-
dinated through accesses to NVMM and shared DRAM. We
show that by simplifying internal data structures of a file
system and by minimizing locks and operations in the criti-
cal path, we can gain significant performance improvements
compared to previous file systems.

In the remainder of this paper, Section 2 presents the motiva-
tion and related work. Protected functions and the Simurgh se-
curity architecture are presented in Section 3. The design goals
and Simurgh’s internal file system architecture are discussed in
Section 4. Section 5 presents the experimental results and Section 6
concludes with a summary and an outlook.

2 RELATED WORK AND MOTIVATION

This section provides an overview of NVMM file systems, their de-
sign challenges, and their impact on applications’ overall execution
time. We also discuss the security challenges of managing metadata
in user space.

We show that existing solutions cannot offer a scalable and
low-overhead user space file system that is able to provide the
same granularity of access permissions as existing kernel level
file systems. We therefore conclude that it is necessary to have
a lightweight security mechanism for user space in-memory file
systems for HPC and scientific computing applications.

Kernel level NVMM file systems: General-purpose kernel file
systems like EXT4 have been adapted to NVMM by adding direct
NVMM access (DAX) to bypass the page cache [25]. Additionally,
new kernel file systems like PMFS or NOVA have been specifically
designed and optimized for NVMM [23, 29, 51, 79]. PMFS, e.g., uses
undo logging for metadata updates [29], while NOVA introduced
per inode logs to improve file system concurrency [79].

All NVMM Kkernel file systems suffer from the scalability and
performance limitations of the OS software stack and often induce
additional internal overheads. The OS overhead consists of the time
for syscalls, VFS, file system code, and data copies. We measured the
execution time of three applications using NOVA on top of NVMM
to understand the impact of the OS and file system software stack
on performance (see Section 5.1 concerning the setup).

Table 1 distinguishes between the time spent inside the appli-
cation, the time for data copies, and the time required by the file
system. Data copies are listed as a separate column as even optimal
file systems need to move data between NVMM and the application.
The results show that the file system overheads are significant and
that it is possible to improve selected applications’ performance by
a factor of up to two by optimizing the file system software stack.
NVMM, therefore, changes performance trade-offs in a way that
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syscalls, the VFS, and file system inefficiencies can become more
costly than the application logic.

User Space NVMM File Systems: NVMM user space file sys-
tems have been designed to further improve performance compared
to kernel implementations. Some of the user space optimizations
could, in principle, also be implemented in the OS, while their adop-
tion is typically slow, as kernel maintainers have to ensure VFS
compatibility with many backend file systems.

Strata [45] is a cross-device file system library that intercepts file
system calls and partly handles data accesses in user space while
it implements metadata management inside the kernel. SplitFS
handles all data accesses in user space [39]. It uses EXT4-DAX
for metadata management and minimizes metadata overheads for
append operations. Strata and SplitFS can improve the performance
of data operations, but they still suffer from most of VFS’s scalability
restrictions for metadata operations. Aerie moves most metadata
operations to a trusted metadata server running in user space [68].
However, communication between Aerie clients and the metadata
server requires (costly) remote procedure calls (RPCs). Moving from
the kernel to a central process for metadata operations does not
necessarily result in a scalable file system since the communication
between client processes and the metadata process introduces a
new bottleneck.

Moving fine-grained control out of the kernel has also been in-
vestigated in Arrakis [52]. Arrakis moves data protection and I/O
scheduling to the I/O devices themselves, with the OS only man-
aging the applications’ access permissions. DevFS goes one step
further by moving even more functionality to an NVMe SSD [40].
Security, integrity, crash consistency, and concurrency are all man-
aged within the NVMe device so that a file system library can
bypass the OS. Challenges tackled by DevFS are limited resources
within the NVMe device and the lack of visibility of the state of
the OS. They are using trusted threads inside the SSD as metadata
processes. Since NVMMs do not have processing capabilities like
SSDs, implementing hardware threads in their controller is not
possible. Therefore, DevFS can only be implemented as a kernel
file system and will suffer from the syscall overheads. Additionally,
DevFS is based on PMFS, therefore its directory operations’ perfor-
mance is very low. In contrast to Arrakis and DevFS, Simurgh is
directly working on top of NVMM attached to the CPU memory bus,
whereas security is ensured by a CPU ISA extension. EVFS [83] is a
file system that reduces syscall overheads by leveraging SPDK [82]
and asynchronous I/O. It supports both NVMe devices and NVMM
through SPDK, while performance results have only been reported
for NVMe SSDs. EVFS does not support multi-process NVMM re-
gion updates and uses a page cache to update NVMMs, which incurs
additional overheads due to extra copies.

CrossFS partitions the tasks of a file system between a user space
component (LibFS) running on the host CPU and a firmware file
system component (FirmFS) running on an intelligent NVMe device
[55]. It exploits the availability of many I/O queues in modern NVMe
devices by assigning each file descriptor to a dedicated I/O queue.
CrossFS therefore requires additional HW and SW support from
the storage device and cannot directly run on NVMM, even if the
authors have emulated their file system using NVMM storage and
dedicated cores borrowed from the host CPU. CrossFS can therefore
not be directly compared with Simurgh. Ren et al. have shown that

CrossFS can improve data and application performance, while no
metadata benchmarks have been performed. We expect that the
current emulation of CrossFS would have restricted the metadata
performance based on relying on a modified version of PMFS and
locks like inode_table mutex.

Designing user space file systems that work directly on NVMM
without a central instance introduces the challenge to provide ade-
quate security because each file system client accessing sensitive
data might maliciously change it.

Dong et al. propose a container approach where all files in a
single coffer share the same permissions and belong to the same
root page and metadata [28]. A kernel module ensures isolation
between containers at the granularity of groups of pages. ZoFS is
a user space library on top of coffers that moves most metadata
operations to user space but still relies on some serialized func-
tions like coffer_enlarge, which induces, according to the authors,
scalability limitations for metadata operations like create. A direct
performance comparison with ZoFS is, due to the non-availability
of the ZoFS sources, not possible, while the performance improve-
ments of ZoFS compared to NOVA are significantly lower than the
improvements of Simurgh compared to NOVA. For instance, ZoFS
offers 4.5x higher file create throughput than NOVA in a shared
directory, while we improve file creates by more than 17x compared
to NOVA for the same benchmark.

The main drawback of ZoFS is its incompatibility with existing
security concepts, which allow distinguishing access permission
between files at a very fine granularity. ZoFS additionally induces
significant overhead in cross-coffer operations and protects against
application errors using MPK, which limits a process to open only
15 coffers. In contrast, Simurgh does not require MPK support, as
user code does not have direct access to NVMM.

KucoFS [20] tries to address some of ZoFS shortcomings. It re-
moves the need for MPK and improves the scalability of metadata
operations. However, it still traps into the kernel for metadata up-
dates, where a single thread handles all requests. This thread can
still become the performance bottleneck in highly concurrent use-
cases. For instance, according to Fig. 7 in [20], KucoFS offers 25%
higher throughput than NOVA in file create in different directories,
while Simurgh provides 2.2x the throughput of NOVA (see Fig. 7a).
User level protection: The idea of isolation and privilege escala-
tion in user space is not new and has been implemented, e.g., based
on the now obsolete segmentation model of CPUs [3, 64]. Previous
works on hypervisors use privilege separation [11, 60] or escalation
[46] to provide higher privilege levels to user space functions using
ISA extensions [60] or hardware support from Intel SGX [26] and
ARM TrustZone [75]. These techniques however induce higher
overheads than syscalls.

There are several works that offer user space library protection
through Intel MPK. Hodor uses Intel protection key hardware to
offer low overhead library protection [34]. ERIM offers in-process
isolation using MPK and code instrumentation [62]. Similar to
ZoFS, these approaches however lack flexibility and the protection
granularity of a general purpose file system. A general approach to
tackle security is taken by capability-based operating systems like
Opal [16] or Eros [59]. Also, new CPU architectures like CHERI
provide built-in support for enforcing library-based protection [73],
while CODOMs [67] uses code-centric domains and instruction
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pointers as capabilities. Simurgh combines the idea of privilege
escalation and capability-based systems to design a secure user
space file system without sacrificing performance and scalability.

Opportunities for HPC environments: I/O performance tun-
ing to provide efficient file systems for next-generation storage
systems like NVMM can be exploited by scientific applications in
many different ways. The performance benefits of Simurgh, e.g.,
directly influence the runtime of data-intensive applications from
the domains of machine learning and big data processing, which
use node-local file systems to buffer intermediate data.

Burst buffer file systems furthermore use node-local file systems
to store data which is accessed in the context of a single application
run or for longer-running workflows [10, 65, 70, 71]. Also parallel
file system like Lustre can directly benefit from performance ad-
vantages of local file system, both for object storage devices and
for node-local client caching [53].

NVMMs additionally provide an opportunity for HPC appli-
cations if they are coupled in the form of disaggregated memory
through RDMA. Orion is a distributed file system for NVMM that re-
duces CPU overheads by leveraging RDMA [80]. Orion uses NOVA’s
code as a base for a local file system, while adding distributed fea-
tures. Orion’s performance is lower than the performance of NOVA
and higher than of other RDMA file systems. FileMR Similarly
extends the node-local NOVA to an RDMA environment [81].

Octopus is a distributed persistent memory file system that uses
FUSE for file I/O [47]. FUSE uses traditional VFS internal locks,
which are the main bottleneck for metadata operations in shared
directories. FUSE also imposes additional data copies and syscall
overhead to every file system function call [63]. This overhead is
non-negligible in NVMM environments.

Simurgh provides a light-weight security mechanism to bypass
the kernel that enables a fully decentralized design. The decen-
tralized internal structure of Simurgh, which includes allocators,
metadata management, and process recovery, can be used to design
distributed file systems which bypass the kernel. The design can
be applied to disaggregated and distributed shared memory and
to user level burst buffer systems that exploit local file systems as
storage backend. The focus of this paper is on the scalability of this
decentralized design on the performance on multi-core nodes, while
future work will extend Simurgh to directly support disaggregated
NVMM.

3 SECURITY

We propose extensions to the CPU instruction set and page table
architecture to implement protected functions that enforce fine-
grained security in user space. File system security can then be
implemented entirely in user space and does not require the ker-
nel as a trusted entity. Protected functions can therefore radically
change how user space file systems are implemented.

Protected functions support performance-critical operations and
simplify the development process for security-sensitive operating
system components. The time for trapping into the kernel for file
system operations like stat and open, e.g., can be more costly than
the file system operations themselves [20], while we will show that
the overhead of calling protected functions is in the same order as
a standard function call.
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Furthermore, the limitations of the VFS can induce additional
delays and limit the scalability of concurrent and parallel applica-
tions [1, 50], while significantly changing the VFS or bypassing it
through additional syscalls is discouraged by kernel developers to
minimize the maintenance overhead of the kernel code [5].

Protected functions also simplify the implementation and mod-
ification of file systems, as software developers can rely on their
standard development environment and programming languages.
The concept of protected functions can be applied to the protected
execution of arbitrary user level services like relational databases
that require fine grained permissions or access control or to the
design of complete microkernel operating systems.

We are aware that the discussion of possible security implications
of a new instruction like jmpp cannot be entirely handled within a
single paper. Discussions in this section include means to overcome
jumps to arbitrary positions inside a protected function or attacks
on the return address through multi-threading. We furthermore
think that the efforts to securely implement jmpp are significantly
lower than for ISA extensions like Intel SGX and that these efforts
are justified by the resulting performance improvements.

3.1 Protected user space functions

This section presents a CPU extension to run protected functions,
including a switch to a higher privilege mode, without OS involve-
ment.

CPU architectures typically enforce security by grouping instruc-
tions into different protection levels [36, 38]. The running state of
the x86 architecture, e.g., is divided into four protection levels. The
running state can be determined using the current protection level
(CPL) register, where CPL=3 indicates the least-privileged user
mode and CPL<3 the different supervisor modes. For simplicity,
we will only distinguish in the following between two protection
levels, a kernel mode and a user mode. Memory pages are divided
into user pages and kernel pages, which can be marked through
page table entries (PTE).

The security extension needs to 1) prevent normal functions from
accessing file system data, 2) disallow normal functions to change
protected code, 3) provide a mean for transitioning privilege from
normal to supervised mode, and 4) restrict the privileged execution
to the predefined trusted functions or locations.

We achieve Requirements 1 and 2 by marking the file system
data and metadata pages and protected functions as kernel pages.
To support the safe transition to privileged mode to support Re-
quirement 3, we introduce a new security bit execute protected ep
in page table entries that indicates whether the corresponding page
can be securely executed or not. The ep bit can only be set from
within kernel mode, and a page can only be written to from kernel
mode if the ep bit is set.

The ep bit is evaluated if a user space application jumps to a
function using the new jump protected jmpp instruction. If ep is set
and the jump target is within a protected page, then the CPU can di-
rectly switch to kernel mode and execute the following instructions
with enhanced privileges.

Nevertheless, using jmpp to jump to arbitrary positions within a
protected page would immediately lead to security vulnerabilities.
Therefore to support Requirement 4, the jmpp instruction checks
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whether the target address is at a fixed offset of the protected page
before changing the execution mode. A single ep bit supports a
fixed number of protected functions within a protected page by
requiring that the first instruction at the predefined address is not
allowed to be, e.g., a nop instruction.

The example in Figure 1 assumes a page size of 4 KB, that each
page access is 32-bit aligned, and that the CPU supports four entry
points into a protected page. These entry points are set to the
offsets 0x000, 0x400, 0x800, and Oxc0@. We assume that the
read() and write() functions can be encoded in less than 1 kB,
while the size of the open() function is slightly bigger than 1 kB.
Therefore, open() has to be encoded in a way that the instruction
at position 0xc@9 is a nop. Code jumping to any offset other than
0x000, 0x400, or 0x800 inside this page using jmpp immediately
leads to an exception, even if the ep bit is set. These predefined
addresses act as entry points to the privilege escalation.

It is necessary that the protected function reduces its privilege
level before it returns. Nested protected calls are possible if jmpp
increments a respective counter at each invocation that is decre-
mented using a protected return pret instruction. Unauthorized
jmpp calls have to be detected within the instruction decoding pro-
cess that starts when converting a virtual address into a physical
address through the translation lookaside buffer (TLB) [27].

3.2 Simurgh security architecture

Simurgh enables co-operative changes to the file system by map-
ping all NVMM data and metadata into the address space of each
application that has access to Simurgh. The mapping ensures that
these NVMM pages can only be accessed by an application having
kernel privileges through protected functions. Consequently, the
application cannot bypass the security mechanisms and access a
file system page without prior involvement of the file system.

Figure 2 shows the overall process of moving permissions from
the OS to the file system. The file system is linked in Step (D to the
application as a preload library. This preload library does not have
the permission to set the ep bit for its pages. Therefore, all protected
functions have to be initialized jointly with the operating system
using a bootstrap process in Step 2. In Step 3), the bootstrap within
Simurgh calls the new load_protected() system call and passes
the name of the required functions (here summarized as simurgh).

The protected functions have to be known to be secure by the
operating system. Any jump from a protected function to a non-
protected function immediately compromises security since appli-
cations can change such functions.

Also, the control flow of protected functions must not rely on
any data outside the protected pages. For example, they should
not read the return address from a stack stored in normal user

0x000 read()

0x400 write()

0x800 open()

0xc00 nop

Figure 1: Internal structure of a 4 KB protected page

pages. Ensuring this prevents other threads in the same process
from changing the control flow of a thread running protected func-
tions [12]. To prevent these stack modification attacks, we change
the stack pointer, once entering a protected function, to a location
inside the protected pages.

The security module inside the operating system (4) loads the bi-
nary of Simurgh into memory pages. It then modifies the page table
of the application process and adds mappings for Simurgh pages
in Step (3. Such pages are flagged as being protected. To protect
against modifications of protected functions, relevant system calls,
such as mmap (), are updated to prevent applications from changing
the mapping table entries of protected functions.

Applications then call the standard 1ibc functions to access files,
and the preloading library redirects the calls to the corresponding
Simurgh function using the jmpp instruction.

Permission enforcement using jmpp and pret is performed sim-
ilar to kernel file systems. The effective user and group ID of the
calling process are passed upon preloading the library and placed in
the protected pages. Simurgh uses this information and the permis-
sion bits in the inodes to check the access permissions. Permission
checking is performed during the path look-up process. Unlike
kernel file systems, permission bits retrieval in Simurgh does not re-
quire a lazy or a second path-walk similar to RCU-walks as Simurgh
does not cache metadata on DRAM and access to persistent inodes
and attributes are immediate upon path look-up.

3.3 Implementation

x86 CPUs determine the Current Privilege Level (CPL) by checking
the last two bits of the code segment register (%CS). Its contents
can only be modified through special instructions like syscalls that
involve altering the execution flow. Our proposed instruction (jmpp)
modifies the CPL value when the conditions for jumping to the
protected code are met and then performs a normal call routine.
We implemented the proposed ISA changes in the cycle-accurate
gemb> [6] simulator, tested its functionality, and measured its per-
formance impact. These simulations aim to show that the jmpp
overhead is low compared to a standard function call. It would
follow that the evaluation of Simurgh on today’s HW without sup-
port for protected functions delivers comparable results to future
evaluations on HW, including the jmpp instruction. It would not be
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Figure 2: Security bootstrap of Simurgh
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possible to derive the same conclusions from a “real” HW implemen-
tation inside CPU architectures available to academic customers,
as these CPUs are not as optimized as commercial CPUs.

The gem5 overhead of a standard x86 call routine including its
return is ~24 cycles. The gem5 implementation jmpp checks the
ep bit in the page table, modifies the CPL value of the CPU, and
performs the call routine to the predefined protected function page.
The jmpp and pret combined overhead is ~70 cycles and therefore
in the same order as a standard function call. In order to compare
the protected functions’ overhead with system calls, we measured
the latency of the getuid syscall as well as an empty syscall, which
both took ~1200 cycles on gem5 simulator.

The syscall overhead is of course not only induced by the call
itself, but also by setting up the registers and copying parameters
to memory, switching to the kernel context, and locating the corre-
sponding function for the syscall through the dispatching table. In
contrast, jmpp employs the same technique as a normal function
call for passing parameters and does not require a context switch.
User code simply calls protected functions by their addresses and
not by a number, and hence, jmpp does not need a dispatching
table. Changing the CPL value and writing the return address in
the protected stacks are the subset of the syscalls’ operations also
needed by jmpp, and take ~30 cycles. Additionally, checking the ep
bit and entry points can be done in ~6 cycles.

On modern CPUs, the overhead of syscalls can be lower than
indicated by gem5. On our experimental setup described in Section
5.1, geteuid() only took ~400 cycles, which is still 6x more cycles
than for protected functions. Nevertheless, also jmpp can be further
improved, e.g., by checking the ep in parallel to the instruction.

Kernel Modification: The bootstrap process, which has been
explained in Section 3.2, is implemented as a Linux kernel module.
It maps the protected functions and changes the ep bit. Since there
is no remapping of the pages, the TLB flushing penalty for chang-
ing the ep bit in the page table entry happens only once, and its
overhead is negligible. We also modified the CPU scheduler so that
upon returning from interrupts and/or preemption, the CPL is set
with regards to the running mode. The kernel module is designed in
such a way that other user level libraries requiring protection can
use it without any modification. Of course, a privileged user needs
to allow the kernel module to load such libraries. In the case of
the absence of the security implementations or the kernel module,
Simurgh is still usable if one can trust the application.

4 SIMURGH FILE SYSTEM LIBRARY

In this section, we present the underlying design goals for the file
system architecture. The main design goals are: 1) Simurgh should
work as a user space file system that only interacts with the OS
kernel during a bootstrap process. 2) It should allow independent
processes to share and persist data and metadata directly from user
space while scaling performance within the number of applications
running on different cores. 3) Simurgh should provide protection
and isolation guarantees equal to kernel file systems and a POSIX
API to support a broad range of applications. Applications should
be able to use Simurgh without source code changes.

Simurgh is built as a user level library. Upon start, it loads the
protected functions into the application’s address space and calls its
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initialization function. The protected initialization function maps
NVMM into the application’s address space and sets up the file
system (see Section 3.2).

Figure 3 shows the memory layout of Simurgh. Simurgh per-
forms all data and metadata operations without involving any cen-
tral instance. Therefore, all processes can directly modify data and
metadata without any restrictions. File system operations are per-
formed concurrently by independent processes communicating
through shared memory.

4.1 Persistent pointers

Simurgh uses mmap() to bring the NVMM region into the appli-
cation’s virtual address space. The start addresses of the memory
devices in the virtual address space of the application are not pre-
dictable due to address space layout randomization (ASLR) [58].
Therefore, default pointers into NVMM or shared DRAM cannot
be used between processes [18].

Others have provided different solutions to manage pointers
across applications with different virtual memory layout. These
solutions range from pointer swizzling [42], to use fat pointers
including their additional pointer de-referencing overhead [44, 76],
to sharing the address spaces of the user processes, which suffers
from security challenges and the danger of race conditions [13, 16,
35], up to the even more dangerous disabling of ASLR.

An alternative is to replace the default, absolute pointers by
universal relative offsets from the start of the NVMM or shared
DRAM device. Simurgh uses these relative pointers as a replacement
for all structures stored on NVMM or shared DRAM. Besides, we
also optimized other components like allocators and shared data
structures to work only with offsets to avoid conversions between
offsets and default system pointers.

4.2 Allocation

Simurgh uses two different internal allocators to manage the shared
NVMM and DRAM space: 1) A data block allocator which allows
the concurrent allocation/deallocation of memory and 2) a metadata
object allocator which allocates internal file system data structures.

Block allocation: Simurgh maintains a linked-list of free block
ranges to allocate memory blocks in shared DRAM. To improve
concurrency, the allocator divides the space into multiple segments,
where each segment is responsible for a contiguous block range.
Similar to the Hoard [4] allocator, we set the number of segments
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Figure 3: Simurgh Memory Layout
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to twice the number of CPU cores, which reduces the probability
of concurrent threads to access the same segment.

An atomic flag per segment is used to provide mutual exclusion
to it while a 1ast_accessed field stores the timestamp of acquiring
this lock. Processes can detect that another process crashed while
holding the lock by considering this field, the current time, and
the maximum duration that a process is allowed to hold a lock.
In order to allocate blocks of the same file closer to each other,
threads use a modulo function based on the value of the inode
pointer to select a segment. This modulo function also distributes
files over segments and therefore reduces contention. If a process
selects a busy segment, it simply moves to the next segment. After
locking a segment, it updates the segment’s timestamp and obtains
the blocks from the linked-list according to a first-fit algorithm
before unlocking the segment again. Upon deallocating a block,
the process finds the corresponding segment, locks it, and adds the
block to the list of free blocks before unlocking it.

Data structure allocator: Most metadata operations require
at least one allocation/deallocation of a file system data structure.
Hence, this allocator needs to be fast and highly scalable. Simurgh
uses an allocator for fixed-sized metadata objects such as directory
blocks, file entries, and inodes, which works similar to the Linux
slab allocator [8]. This allocator creates a pool of metadata objects
on preallocated segments acquired from the block allocator. New
segments are allocated on demand. Simurgh saves the layout of the
preallocated metadata spaces inside the superblock.

Each metadata object contains an atomic valid and a dirty
flag. When the file system requests a metadata object, the allocator
assigns an object from the pool, sets the valid and dirty bit, and
returns it. A metadata object is ready to be allocated from the pool
if both bits are unset. The valid bit is only set by the allocator, while
the dirty bit is set for an unprocessed metadata object. Using two
bits prevents the loss of an allocated metadata object during a crash.
The recovery procedure is done according to the state of these two
bits. Upon deallocation, the metadata object needs to be zeroed,
therefore the allocator unsets the valid flag, then zeroes the object
and unsets the dirty bit.

4.3 Data and Metadata Management

Removing the kernel as the coordinating instance requires user
processes to access and modify data and metadata concurrently and
consistently while communicating through shared memory. These
processes must not depend on each other, and all non-crashing
operations need to be completed and persisted by their calling
process, while the file system libraries have to provide recovery
mechanisms from process-level and system-level crashes.

In VFS, all directory operations are sequential, regardless of being
reads or writes [50, 78]. In the following, we present our lessons
learned from these VFS limitations and how our directory structure
shown in Figure 4 enables Simurgh to scale the performance of
metadata operations acting on directories.

Inode: Kernel file systems contain two different inode structures
connected through an inode number. Simurgh does not exchange
metadata with the kernel, so we have removed the inode number
and the corresponding mappings. Simurgh instead uses the 64-bit
persistent pointers as unique inode identifiers, which act as offsets
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Figure 4: Directory structure

from the beginning of the NVMM space to the inode locations.
Simurgh, therefore, does not require costly indexing structures for
converting inode numbers to locations and also does not have to
copy inode data between the VFS and the file system.

Directory blocks: Simurgh uses linear hash maps as directory
blocks. Each directory block maps hashed keys to persistent point-
ers that link to the physical locations of file entries. File entries can
represent files or directories and maintain a name field and the link
to their inode or directory block.

Hash maps require no merges or shifts to maintain the ordering
of inserts or deletes. Therefore, they allow us to maintain con-
sistency and failure atomicity without performing extra memory
copies otherwise required for journaling or logging. Directory
blocks can be linearly extended through a next field. The first
directory block in a directory contains a busy flag per line and a
single log entry for cross directory operations.

Open file map: Simurgh uses per-process maps that store file
descriptors of open files. Each map entry contains the file’s open
mode, the current position in the file, the path, and the persistent
pointer to the inode. The data structure allocator in Simurgh pro-
vides lockless allocation for concurrent multithreaded open/close.

Concurrent file systems operations: In the following, we will
present examples of concurrent directory operations and how they
benefit from the underlying hash blocks.

Figure 5a shows the workflow for creating the new File 3. We
assume that File 1, File 2, and File 3 hash to the same block in
the hash table and that there is no empty space in the existing
hash blocks. Therefore, a new hash block needs to be created. In
Step (D, the inode of File 3 is created and persisted. In Step (2), the
corresponding file entry is created and linked to the inode. We have
to set the busy flag of the whole line in the chain of hash blocks in
Step (® before a new hash block is created in Step @ and is linked
to the previous one. The pointer of the new file entry in the hash
block is persisted in Step (3. Finally, the dirty bits for the newly
created data structures are unset in Step (6. In case of a crash before
Step (), the file is not created and no crash recovery is needed. The
allocated objects can be reclaimed by the metadata allocator.

Figure 5b shows the process of deleting File 2. In this example,
the three depicted files map to the same row in the hash blocks, and
therefore, the directory has three hash blocks. The delete process
starts in Step (D by setting the busy flag for the whole line in the
chain of hash blocks to prevent concurrent accesses to the row. The
valid bit of the file entry of File 2 is unset and the dirty bit is set in
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Figure 5: Shared directory metadata operations. The arrows depict the relative pointers to the metadata objects

Step (2. This indicates that the operation on the file entry metadata
object has not been completed. The inode of File 2 is zeroed in Step
(® and its file entry is zeroed in Step (4. The pointer in the middle
hash block then points to a zeroed object, which shows that it is
invalid and hence, the pointer needs to be zeroed. The offset of
the file entry for File 2 in the middle hash block is then zeroed in
Step (. Since the middle hash block is empty, it should be freed by
unsetting the valid bit and updating the link to the next hash block
in Step (6. If the process crashes in between Steps ) to (5, the
next process accessing the same line identifies a null pointer and
completes the remaining steps for deletion. The last step is optional,
and crashing before that will not impose any inconsistency.

Renaming a file in the same directory starts by creating a new
file entry which serves as a shadow copy of the old file entry (Step
@ in Figure 5c). We update the file entry to point to the same inode
in Step (). In case of a recovery process, we need to identify hash
blocks with ongoing renames to scan and fix them. Therefore, we
set the busy flag of the whole hash block in Step 3 and the busy
flag of the corresponding line for the old name is set in Step @ to
mark the transaction and prevent modifications of lines involved in
renames. The pointer to the old file entry is changed to the new file
entry in Step (3. This makes the line inconsistent since the hash of
the new file entry does not match the line that points to it. We use
this inconsistency and the dirty and valid bits in the directory block
to detect any failed intra-directory rename and the next process
accessing the same row in the hash block continues its execution.
The old file entry is no longer needed and can be removed in Step
(®. If the process or the system crash before this step, the old file
entry is freed during the next file system maintenance check. The
pointer in the new line is updated in Step (2 to point to the new
file entry and the pointer created in Step (3 is removed in Step ().

Cross directory renames i.e., moving a file to a different directory,
are special since they require more than two simultaneous updates.
Therefore we use one log entry per directory for this purpose. Upon
issuing a cross directory rename, the operation will be written in
the old directory’s log entry in Step (D and its dirty bit is set in
Step @), which specifies a rename operation in the directory. The
corresponding old and new rows are being locked in Step 3) and
in Step (@ the operation is performed.

Directory operations strongly influence file system performance
[50, 78] and Section 5.2 shows that our design can significantly
improve the scalability of create, unlink, and rename operations
in shared directories.

Symbolic links are supported through the 1ink flag in the file
entry structure. If this flag is set, then the inode that it points to only
stores the destination path. Hard links are supported by different
file entry structures being able to point to the same inode and by
keeping a reference counter inside the inode. Creating a symbolic
link is similar to creating a file entry object with the link flag set.

Crash recovery: Simurgh is entirely decentralized, and it is nec-
essary to perform crash recovery after an individual process crash.
A process is considered to be failed when another process waits for
more than a certain threshold on a busy-wait lock. In this case, the
waiting process performs the recovery corresponding to this lock.
In case of a crash during a create, delete, or rename, the following
process finishes the operation. The recovery decisions are made
based on metadata object flags. We ensure that the combination
of metadata flags and the operations leads to a unique recovery
decision. For example, a dirty directory bit in Figure 5c always indi-
cates a rename process. If a crash happens after step 5, only a single
directory scan must be performed to find the mismatched hash
and complete the rename operation. Recovery from a whole system
crash or improper shut-down is performed by scanning all metadata
objects, and the file system’s data blocks upon initialization.

Data operations: Simurgh uses non-temporal stores to bypass
the CPU caches for writing data to files. We employ a read/write
lock per file to ensure exclusive writes while allowing concurrent
reads. Simurgh makes sure that the metadata updates occur after
the data has been persisted using sfence.

5 EXPERIMENTAL RESULTS

This section first presents the evaluation environment and the
setup of our experiments. Next, we discuss the impact of our design
choices and optimizations on data and metadata performance and
scalability. Then, we present the impact of our optimizations on real
world applications. We compare Simurgh with EXT4-DAX, PMFS,
SplitFS, and NOVA, while a comparison with ZoFS has not been
possible, as its sources are not publicly available. We do not compare
with overlay approaches like Libnvmmio [21] because they only
support a limited number of file system operations directly and
dependent on an underlying file system. Finally, we measure the
time to recover Simurgh after a system crash.

5.1 Evaluation setup

All experiments have been conducted on a single socket server with
a 10 cores Xeon Gold 5212 processor running at 2.5GHz, 192 GByte
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DRAM, 746 GByte Intel Optane DC persistent memory across 6
DIMMs, running a Linux kernel on CentOS 8.2. We have used kernel
version 5.1.0 for running Simurgh, NOVA, and EXT4-DAX. SplitFS
and PMFS were compiled against their supported kernel versions
(4.13.0 and 4.18.19, respectively). We have chosen the POSIX mode
for SplitFS that offers the highest performance. NOVA has been
configured with inline writes, which has less strictness and higher
performance.

We have used the most recent available and runnable code ver-
sion for all file systems, and we have seen that the performance of
some file systems like NOVA has improved since their initial publi-
cation, so that sometimes also the relative performance between
them has changed compared to previous publications. Furthermore,
the performance of NVMM file systems significantly depends on
the number of NVMM DIMMS, so that the absolute performance
cannot be directly compared with previous publications.

We zeroed both NVMM and the shared DRAM between experi-
ments and flushed the OS buffer cache after each test. We selected
synthetic microbenchmarks from FxMark [50]. We also applied
Filebench [61] as macrobenchmark and included YCSB, Git, and Tar
as real world applications. All benchmarks have been run 20 times
for each data point. To take the overhead of our security mechanism
into account, we added 46 cycles (the difference between normal
and jmpp calls) to each Simurgh call.

5.2 Microbenchmarks

We selected 10 microbenchmarks from FXMark to compare Simurgh
with others. FxMark has not been designed for benchmarking
NVMM and we have slightly adapted it to minimize the influence of
the CPU cache. When reading files, e.g., we do not access the same
blocks repeatedly, but select pseudo-random addresses. Fig. 6 shows
the bandwidth reported by the original FxMark and the maximum
bandwidth of NVMM in our setup, indicating that Simurgh and
Nova mostly work on cached data for the original FXMark. It also
shows that both file systems’ performance is bound by the NVMM
bandwidth when using the adapted FXMark.

Simurgh scales significantly better than the competing file sys-
tems, while its base performance is also typically the best. The
only exceptions are append and fallocate for small numbers of
threads. SplitFS offers higher append performance for small thread
counts due to its targeted append optimizations append. PMFS has
higher throughput for fallocate because of a simpler, but unscal-
able allocation mechanism. Due to space limitations, we typically
only describe for each benchmark the reasons for the performance
differences between Simurgh and the best competing file system.

Figure 7a presents the createfile throughput in private directories
(one directory per thread) when creating 1M files. The benchmark
stresses inode allocation and directory management. All file systems
are able to scale performance as the running processes do not
compete for the same directory blocks. Simurgh creates files 3.4x
faster than NOVA for a single thread and 2.2x for 10 threads.

All file systems performing metadata management inside the
kernel do not scale for creates inside shared directories (Figure 7b).
In their case, the processes compete for a shared VFS inode lock to
change directory entries. Many real world applications, e.g., from
HPC [2, 31] and mail servers, therefore suffer from performance
penalties or have to adapt their code to avoid shared directories.
Simurgh scales for both private and shared directories as its direc-
tory hash map supports concurrent modifications.

The same behavior can be seen for deletefile that removes 1M
empty files from private directories (Figure 7c). Constant updates
to the directory entry (dentry) cache lead to the poor performance
of kernel level file systems [78]. PMFS additionally suffers from its
sequential search inside directory blocks. Since deallocating data
structures does not require to allocate a metadata object, Simurgh
shows even higher performance in deletefile compared to createfile.

renamefile renames empty files in shared directories (Figure 7d).
Simurgh is 2.2x times faster than EXT4-DAX for a single thread
and 18.8x faster for 10 threads. The fine-grained busy-wait locks on
hash table lines allow for fast, concurrent, and consistent updates.

Figure 7e shows the performance for resolvepath to open files
in private, nested directories of depth five. All kernel file systems
show the same performance because of the large dentry cache.
Although Simurgh does not benefit from a directory entries cache,
it shows superior performance compared to others because of its
fast and concurrent lookup in directory hashes. SplitFS performs
metadata operations through EXT4-DAX, which seems to induces
even higher path resolution overheads.

Contention in the dentry cache can lead to scalability bottlenecks
of resolvepath when processes share common paths [50]. Figure
7f confirms this for others, while Simurgh still ensures scalability.
This shows that in addition to the overheads of searching for inodes
by the inode number, VFS also imposes scalability limitations on
path resolution. Simurgh operates directly on pointers and does
not induce the overhead of relying on a tree to locate inodes.

Extremely fast operations like resolvepath greatly benefit from
our security mechanism, since ~330 cycles saved by removing
syscalls can reduce the operation’s latency by half. On slower oper-
ations, improvements entirely originate from the library design.

appendfile appends 100,000 4 kB data blocks to private files to
evaluate the concurrent block allocation (see Figure 7g). Most file
systems allocate a 4 kB block for each append and update their data
mapping structure for files. SplitFS allocates bigger append regions
that are lazily synchronized, reducing the allocation overhead and
providing a very high append performance for small thread counts.
Simurgh scales to ten threads, while the PMFS’ performance re-
mains constant beyond four threads due to its serial block allocator.

fallocate requests 1,000 4 MB data chunks for private files to
stress the block allocator. We configured all file systems to not zero
the allocated blocks and issued f'sync to persist the changes. Figure
7h shows that PMFS and EXT4-DAX do not provide scalability due
to their sequential allocator. Simurgh scales by distributing the
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Figure 7: Microbenchmark results. The four letter shortcuts are taken from FxMark (if available).

Workload #Files Dir Width File Size # Threads
Varmail 1,000 1,000,000 128KB 16
Webserver 1,000 20 128KB 100
Webproxy 10,000 1,000,000 16KB 100
Fileserver 10,000 20 128KB 50

Table 2: Filebench Workloads (default settings)

requests across several lists and checking for a free page through
bitmaps. NOVA and SplitFS also offer scalability but their base
performance is significantly lower than that of Simurgh.
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Figure 8: Throughput for Filebench workloads

The shared file read benchmark (see Figure 7i) investigates the
random read performance when accessing a shared file. Max. band-
width denotes the maximum bandwidth of our NVMMs that is mea-
sured by issuing sequential read or writes using up to ten threads.
We found the NVMM saturation point by increasing the thread
count gradually. Simurgh saturates this bandwidth, which shows

its efficiency in serving data requests. The private file random read
benchmark allocates a separate set of files per thread (see Figure 7j).
Simurgh scales similarly for both shared and private files, while the
other file systems perform poorly in reading from a shared file. The
main reason is Linux’s read and write semaphore which is being
updated atomically.

A different behavior was observed for overwriting a shared file
(see Figure 7k). Simurgh provides file-granular mutually exclusive
writes and threads spend more time to acquire these write locks
when scaling their number, leading to performance penalties while
still being significantly faster than others. The file-granular locks
for writes have been implemented to make the Simurgh semantics
comparable to other file systems and can be disabled if scalable
writes to shared file are required and coordinated by the application
itself. Therefore we have also included the results for the relaxed
write Simurgh. Writes to large private files are slightly slower than
overwrites, as they include additional overhead to allocate blocks.
Figure 71 shows that Simurgh nevertheless scales well for writes
to private files and is again faster than all competing NVMM file
systems. We were unable to run SplitFS for this benchmark.

5.3 Macrobenchmarks

We used Filebench to test synthetic workloads (see Table 2 for
the settings). Varmail is metadata intensive and Simurgh therefore
strongly benefits from its user level optimizations. It outperforms
NOVA by a factor of 1.7x (see Figure 8). EXT4-DAX performs poorly
in this workload since the files are small and it is optimized towards
large files and access sizes.
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Figure 10: YCSB execution time breakdown for Simurgh

Webserver concurrently opens and reads files while occasionally
performing appends. All file systems perform similarly since this
workload mostly consists of reading private files, which confirms
the microbenchmark for private reads.

Webproxy consists of concurrent create, read, append and un-
link operations. Simurgh achieves an 11% higher performance than
NOVA. EXT4-DAX performs better in webproxy, compared to var-
mail, but worse than webserver, which shows its optimizations
towards data operations and its poor performance for metadata.
Here PMFS performs poorly as it keeps an unsorted list of directory
entries, which hurts the performance of unlinks. This behavior was
not seen in varmail, since it contains 10 times fewer files.

Fileserver emulates a file server by performing create, stat, and
unlink operations and by reading and writing large files. NOVA
and Simurgh offer almost the same performance since reading
contributes to most of the program execution time.

5.4 Real-world applications

In this section, we present the performance impact of our optimiza-
tions on three real-world applications.

YCSB contains a set of six key-value store workloads. We used
LevelDB as the backing database and employed the software pro-
vided in [39]. Figure 9 shows the throughput of the examined file
systems for this benchmark. All values are normalized to that of
SplitFS. Simurgh achieves the highest data throughput in all work-
loads. Although LevelDB heavily relies on append for maintaining
the database and SplitFS is optimized towards append, Simurgh
still provides higher performance. This is because of our lower
processing overhead needed for servicing data requests and orders
of magnitude faster metadata operations, needed for creating and
deleting files. The highest improvement of Simurgh compared to
SplitFS belongs to RunA (36%) with the highest update ratio.

Figure 10 shows that the overhead of Simurgh in YCSB workloads
is less than 10% of the overall application runtime and, hence, that
additional file system optimizations will not further significantly
improve its performance. The rest of file systems spent the same
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Figure 11: Tar throughput

amount of time in the application and data copy process and their
lower performance is due to their higher file system overhead.

The Tar benchmark packs and unpacks the Linux kernel source
code into/from one file. The pack workload measures the perfor-
mance of locating files while performing data operations. This
benchmark does not issue any flushes. Kernel level file systems can
benefit from all 1ibc and VFS caching mechanisms for both data
and metadata. Figure 11 shows that Simurgh can again reduce the
execution time of the benchmark compared to others. This shows
that despite the lack of caching, it offers a higher performance by re-
designing the file system architecture. The unpack workload issues
several syscalls per file to set, e.g., accessed time or permissions.
Since Simurgh does not have to issue syscalls and does not rely on
the slow VES, it offers 2x higher throughput, compared to others.
Note that this benchmark employs mmap to read the large packed file.
Simurgh implements mmap similarly to other file systems through
the mmap syscall by modifying the page table. Therefore, the perfor-
mance of mmap accesses is the same for Simurgh and others.

In the git benchmark, we measured the throughput of add,
commit and reset using the Linux source code. The git internal
automated garbage collection was disabled and between commit
and reset, all files were deleted (Figure 12). In both add and reset,
file system operations contribute to a small percentage of the ex-
ecution time. Hence, Simurgh does not offer higher performance.
In commit, git retrieves the metadata of all the files and therefore,
Simurgh improves performance by 48% compared to PMFS. Similar
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Figure 12: Git throughput
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to the tar benchmark, git is also single-threaded and PMFS offers
higher performance, compared to other previous file systems.

5.5 Recovery Test

Simurgh recovery uses a mark-and-sweep approach; therefore its
memory consumption is linear in the number of files and directories.
Since most metadata objects are close to each other, we can benefit
from the full bandwidth of NVMM when reading them. To measure
the recovery time from a full system crash, we crashed a file system
with 10 directories each containing the complete Linux source code
(672,940 files and 88,780 subdirectories). The recovery process to
a healthy state took 4.1 seconds and is therefore slightly faster
than results presented in [28, 39]. The time required for a run-
time process recovery, e.g., for an unfinished rename operation
through scanning hash consistency in one line, is negligible and
not measurable. The recovery process and the retrieval of assigned
but unused metadata objects can be performed in the background
so that recovery start-up times are minimized. Nevertheless, we
are aware that file systems can contain billions of files and that the
recovery process has to be further improved for production use.

6 CONCLUSION AND OUTLOOK

In this paper, we introduced the concept of protected functions. It
enabled us to circumvent the unnecessary software stack of the
OS and to offer loosely coupled secure software services to ap-
plications. By employing the concept of protected functions, we
designed Simurgh, a completely user space NVMM file system in
shared memory. Simurgh offers the same protection and access
rights as Linux file systems. Simurgh provides scalable data and
metadata operations while guaranteeing consistency, durability,
and ordering, by simplifying data structures and employing lock-
less operations. Experimental results using real NVMM show that
Simurgh is up to 18x faster than previous file systems for metadata
operations and improves real world applications by up to 89%. Fu-
ture work includes adapting Simurgh to distributed shared memory
environments and multi-node HPC applications, the implementa-
tion of the proposed instructions inside the RISC-V processor to
understand area and performance implications [72] and its applica-
tion to optimize microkernel OS implementations.
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