
An Operating System Level Data Migration Scheme
in Hybrid DRAM-NVM Memory Architecture

Reza Salkhordeh and Hossein Asadi
Data Storage Systems & Networks (DSN) Lab, Department of Computer Engineering

Sharif University of Technology, Tehran, Iran
Email: salkhordeh@ce.sharif.edu and asadi@sharif.edu

Abstract—With the emergence of Non-Volatile Memories
(NVMs) and their shortcomings such as limited endurance and
high power consumption in write requests, several studies have
suggested hybrid memory architecture employing both Dynamic
Random Access Memory (DRAM) and NVM in a memory system.
By conducting a comprehensive experiments, we have observed
that such studies lack to consider very important aspects of
hybrid memories including the effect of: a) data migrations on
performance, b) data migrations on power, and c) the granularity
of data migration. This paper presents an efficient data migration
scheme at the Operating System level in a hybrid DRAM-
NVM memory architecture. In the proposed scheme, two Least
Recently Used (LRU) queues, one for DRAM section and one
for NVM section, are used for the sake of data migration. With
careful characterization of the workloads obtained from PARSEC
benchmark suite, the proposed scheme prevents unnecessary mi-
grations and only allows migrations which benefits the system in
terms of power and performance. The experimental results show
that the proposed scheme can reduce the power consumption
up to 79% compared to DRAM-only memory and up to 48%
compared to the state-of-the art techniques.

I. INTRODUCTION
In the past decades, computer designers have steadily used Dy-

namic Random Access Memory (DRAM) as the main memory due
to its prominent features such as high performance and low cost per
GB. Despite of the performance and cost efficiency of DRAM, it
still suffers from frequent recharge requirement and low scalability.
Recharging DRAM cells every few milliseconds imposes significant
power, no matter how many accesses are dispatched to the main
memory. The power usage of DRAM is more pronounced when
system is mostly idle. In addition, the low scalability of DRAM limits
the maximum main memory size that can be used in a computer
system [1].

To alleviate the limitations of DRAM, Non-Volatile Memories
(NVMs) have been emerged in the recent studies offering zero
leakage current to preserve data and less scalability issue as compared
to DRAM. Among various NVMs offered in the past years, Phase-
Change Memory (PCM), Spin-Transfer Torque (STT-RAM), and
resistive RAM (PRAM) are recognized as the most promising NVMs
to be employed in the main memory [2]. Despite prominent features
of NVMs, they have serious shortcomings such as high dynamic
write power and long write latency (similar to solid-state drives [3])
which prohibit them to entirely replace the DRAM technology. NVMs
have asymmetric characteristics for read and write requests. In most
emerging NVMs, write requests require more time for completion
and therefore, their performance will be lower in write-dominant
workloads. From power perspective, write requests are more power
consumptive than read requests. In addition, NVMs have very limited
write cycles compared to DRAM despite of several efforts to increase
their lifetime [4], [5].

Due to shortcomings of DRAM, several studies have attempted
to employ NVMs in the main memory of computer systems. A few
of these studies explore possibility of entirely replacing DRAM with
NVMs [6], [7]. A recent study shows that NVMs cannot reach the
performance and power consumption of DRAM in the near future [6].

Other studies investigate using a hybrid memory composed of both
DRAM and NVMs and possible effects on the Operating System (OS)
[8], [9], [10]. Hybrid memories try to use characteristics of DRAM
and NVM in order to improve performance or power consumption as
compared to a DRAM-based main memory. Clock-DWF [8] is one
of the most recent studies in this field that uses two clock algorithms,
one for managing DRAM and another for managing NVM. This
technique tries to move data pages between these two memories in
order to reduce the power consumption while maintaining almost
the same performance level. Clock-DWF outperforms previous work
such as CLOCK-PRO and CAR which makes it the most optimal
technique in the literature. The simulated results of Clock-DWF
over hybrid DRAM-NVM memory lacks considering the effect of
the migrations between DRAM and NVM memories. In addition,
the effect of moving data pages between the main memory and the
secondary storage has been neglected. There are also several studies
that employ hybrid memory architecture in on-chip memory [11],
whose discussion is beyond the scope of this work.

This paper presents a data migration scheme in a hybrid memory
architecture employing both DRAM and NVM in the main memory.
The main aim of the proposed scheme is reducing the number of
non-beneficial data migrations between DRAM and NVM memories
to improve both performance and power efficiency. To this end, we
use two Least Recently Used (LRU) queues (one for DRAM and one
for NVM) and optimize the LRU queue for NVM to prevent non-
beneficial migrations to DRAM. The optimizations in the LRU queue
are minimal and therefore the proposed scheme will have almost the
same hit ratio as an unmodified LRU. Contrary to Clock-DWF that
each write hit will result in moving the page to the DRAM main
memory, in the proposed scheme every hit in the NVM LRU will be
treated similar to the LRU algorithm with one difference. If a page
stays in the top pages of LRU for more than a threshold accesses, it
will be considered hot and will be moved to DRAM. Since the cost
of moving a data page between two memories is high, using this
threshold will prevent non-beneficial migrations that are very likely
to occur in previous studies such as Clock-DWF.

Both the proposed scheme and previous studies have been sim-
ulated using a framework developed similar to Linux memory
management layer. The performance and power characteristics are
extracted from the same source as previous studies. We also used
PARSEC to run the experiments [12]. Since the multi-level caches
in CPU affect the distribution of accesses dispatched to the main
memory, in this paper we used COTSon full-system simulator [13]
which is able to simulate a multi-core system with many cache
levels. The experimental results show that the proposed scheme can
reduce the power consumption up to 48% (14% on average), improve
performance up to 70% (48% on average), and improve endurance up
to 93% (64% on average) compared to previous studies. As compared
to a DRAM-based main memory, the power consumption is reduced
up to 79% (43% on average).

The rest of the paper is organized as follows. Section II presents
our model for evaluating the performance and power consumption in
hybrid memories. The motivation of this work is discussed in Section
III. The proposed data migration scheme is presented in Section IV.
Experimental results are reported in Section V. Finally, Section VI
concludes the paper.

TABLE I: Parameters Description

Parameter Description
PHitDRAM

DRAM Memory Hit Probability
PHitNV M

NVM Memory Hit Probability
PRDRAM

DRAM Read Access Probability
PRNV M

NVM Read Access Probability
PWDRAM

DRAM Write Access Probability
PWNV M

NVM Write Access Probability
PMiss Main Memory Miss Probability
PMigD

Probability of NVM to DRAM Migration
PMigN

Probability of DRAM to NVM Migration
PDiskToD Probability of Moving Page to DRAM due to Page Faults
PDiskToN Probability of Moving Page to NVM due to Page Faults
TRDRAM

DRAM Memory Read Latency (s)
TRNV M

NVM Memory Read Latency (s)
TWDRAM

DRAM Memory Write Latency (s)
TWNV M

NVM Memory Write Latency (s)
TDisk Disk Access Latency (s)

PoRDRAM
DRAM Read Dynamic Power (ηj)

PoWDRAM
DRAM Write Dynamic Power (ηj)

PoRNV M
NVM Read Dynamic Power (ηj)

PoWDRAM
NVM Write Dynamic Power (ηj)

PageFactor # of accesses to memory to write a data page
AvgStaticPower Prorated Static Power Over All Requests

StperPage Static Power Consumption of a Page (ηj/s)
AccessperPage Average Number of Accesses to Each Page (1/s)

II. PERFORMANCE AND POWER MODELS IN A HYBRID
MEMORY

This section presents a model for performance and power con-
sumption of hybrid memories. The proposed model tries to consider
all aspects of computer systems which influence the performance
and/or the power consumption. In addition to the traditional moving
pages in case of a miss or evicting a data page, hybrid memories
have migrations between two memories. The migration between two
memories depends on the architecture of the hybrid memory. For
the sake of generality, we consider separate memory modules for
DRAM and NVM that communicate through Direct Memory Access
(DMA). If both memory types can be assembled in one module,
the migrations can be done more effectively. The integrated memory,
however, requires hardware modification which is out of scope of this
paper. In the following sections, the performance and power models
will be presented.

A. Performance Model
The performance model depends on the delay of DRAM and

NVM, granularity of eviction, and the delay of migration between
memories. For measuring performance, we use Average Memory
Access Time (AMAT). The overhead of migrations will be prorated
between all accesses to the memory. Equation 1 shows the formula for
AMAT. The description of the parameters is available in Table I. In
this equation, the first two terms calculate AMAT for all hit accesses
in either DRAM or NVM. The third term considers the page faults.
Since transferring a data page from a disk to the memory will be
done with DMA, the delay of writing data blocks to memory will be
overlaid with reading the next data block from the disk. Therefore,
OS only sees the disk delay and in this term we only consider the
disk delay.

AMAT =

PHitDRAM
∗ (PRDRAM

∗ TRDRAM
+ PWDRAM

∗ TWDRAM
)

+ PHitNV M
∗ (PRNV M

∗ TRNV M
+ PWNV M

∗ TWNV M
)

+ PMiss ∗ TDisk

+ PMigD
∗ PageFactor ∗ (TRNV M

+ TWDRAM
)

+ PMigN
∗ PageFactor ∗ (TRDRAM

+ TWNV M
) (1)

The last two terms calculate the migration cost between two
memories. Upon occurring a migration, a data page will be read
from a memory and will be written to the other memory. Since
the granularity of data pages is quite larger than the actual accesses
to memory (typically 4 up to 16B), we use PageFactor that is a
coefficient which converts moving of a data page into the required

number of accesses to memory. The granularity of the moves between
disk and memory modules and between two memories is a data page
which is typically 4KB or 8KB. In this paper, we assume 4KB
data pages. Moving a data page from disk to either of memories
might result in a migration between two memories. It depends on
the employed algorithm for managing hybrid memory. The proposed
performance model takes into account this type of migrations.

B. Power Model
The proposed power model tries to consider every aspect of the

hybrid memories in order to provide more accurate and more realistic
estimations for the power consumption of computer systems. While
static power consumption is consumed regardless of the number of
arrived requests to the memory, dynamic power is consumed per
request sent to the memory. Our power model considers the migration
between two memories and moving pages from disk to either of the
memory modules as well as static and dynamic power for servicing
requests.

The dynamic power consumption is calculated per access to the
memory. This will result in independency of the power model from
application runtime and the memory size. Therefore, we introduce
Average Power Per Request (APPR) as a metric for measuring the
power as shown in Equation 2. Similar to the performance model, first
two terms calculate the power for all hit accesses to the memories.
The third and fourth terms consider the write power for moving a data
page from disk to a memory module. The last two terms take into
account the power effect of the migrations between two memories.

APPR =

PHitDRAM
∗ (PRDRAM

∗ PoRDRAM
+ PWDRAM

∗ PoWDRAM
)

+ PHitNV M
∗ (PRNV M

∗ PoRNV M
+ PWNV M

∗ PoWNV M
)

+ PMiss ∗ PDiskToD ∗ PageFactor ∗ PWDRAM

+ PMiss ∗ PDiskToN ∗ PageFactor ∗ PWNV M

+ PMigD
∗ PageFactor ∗ (PoRNV M

+ PoWDRAM
)

+ PMigN
∗ PageFactor ∗ (PoRDRAM

+ PoWNV M
) (2)

Since static power consumption is independent from requests, we
introduce a new parameter called AvgStaticPower which prorates
the static power consumption between all requests arrived to the
memory in a given time interval. The reason behind prorating the
static power over all requests is that from the OS perspective, the
main memory consumes power (including both static and dynamic)
for servicing the requests and both of the sources of the power
consumption should be considered as the cost of servicing the
requests. For a specific workload, AvgStaticPower is calculated
according to Equation 3.

AvgStaticPowerPage =
StperPage

AccessperPage
(3)

Here, AvgStaticPower can be combined with the dynamic power
to form an APPR that models all power aspects of hybrid memories.
It is worthy to mention that the dynamic power consumption is still
independent from memory size and workload. As expected, static
power per request is still dependent on memory size and request
service rate.

III. MOTIVATION
Designing hybrid memories and employing both DRAM and NVM

memories is discussed in many of previous work. A group of previous
studies tried to use DRAM as a caching layer for NVM memory [10],
[14], [15]. Similar to the other caching techniques, if the locality of
the requests drops below a threshold, the performance of the cache
will be decreased. In addition, the algorithms employed in the DRAM
cache can be moved into the Last Level Cache (LLC) of CPU in order
to evict mostly read-dominant data pages [16].

Another group of previous studies, similar to our proposed scheme,
use DRAM and NVM at the same level in the memory hierarchy
[8], [9], [17], [18]. Many of the these studies require hardware
modifications in memory module controllers [17], [9]. There are

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

raytrace

stream
cluster

vips
x264

N
o

rm
a

li
z
e

d
 P

o
w

e
r

C
o

n
s

u
m

p
ti

o
n

Static Dynamic Page Fault

Fig. 1: DRAM Power Breakdown

also very few software-driven techniques that try to use the existing
interfaces between OS and memory modules [18], [8].

CLOCK-DWF [8], which is one of the most effective techniques
in the previous work, is a very similar study to this paper and it
outperforms many of the previous studies such as CLOCK-PRO [19].
Hence, we will have an in-depth analysis about its performance and
power. CLOCK-DWF uses two clock algorithms one for each of the
memory modules. Upon occurrence of a page fault, if the request
causing the page fault is write, the page will be moved to the DRAM
and otherwise it will be moved to the NVM. The modifications in
the clock algorithm enables CLOCK-DWF to find popular and write-
dominant data pages and move them to the DRAM memory. If a
write request arrives for a data page residing in the NVM memory,
the data page will be moved to DRAM. Migrating pages between two
memories require many accesses to both memories. But such effect
is not considered in CLOCK-DWF which will result in inaccuracy of
their model. In the reminder of this section, we will analyze CLOCK-
DWF with respect to the proposed performance and power models.

Before examining CLOCK-DWF, we will calculate the maximum
power saving that can be achieved by reducing the static power
consumption. The proposed power model can be used for modeling
homogeneous memories. Hence, the single DRAM main memory is
characterized by the proposed model. Considering a DRAM-only
main memory with LRU algorithm as the eviction policy, Fig. 1
shows the composition of the power consumption sources for various
workloads. Since static power consumption contributes for 60-80% of
the total power consumption of DRAM main memory, reducing the
static power consumption will have significant effect on the overall
systems power consumption. As shown in Fig. 1, the streamcluster
benchmark does not behave similar to the other workloads. According
to Table III, this workload has a large burst of accesses and a
small memory footprint which will result in higher dynamic power
consumption. Workloads with a high hit ratio in LLC of CPU will
have higher static power consumption per request. This is due to less
requests will reach the main memory and power consumption will
be prorated over fewer number of requests.

CLOCK-DWF maintains two clock algorithms for DRAM and
NVM. The clock algorithm in the NVM is the traditional clock
algorithm with one difference. If a write access arrives for a data page
in NVM, the corresponding data page will be moved to the DRAM.
Therefore, no write access will be responded by NVM. The main aim
of this method is to reduce the number of writes in NVM. Although
this prevents any writes from reaching NVM, each write access for a
data page in NVM will result in a data page migration between two
memories. Clock algorithm for DRAM, however, is different and tries
to keep write-dominant data pages in the DRAM memory and evicts
the mostly read-dominant data pages. This is motivated by the fact
that the read-only pages will have better performance-power trade-off
compared to write requests in NVM. Upon occurrence of a page fault,
if the request is read, the corresponding data page will be moved to
NVM and if it is a write, the data page will be moved to DRAM.

A. Power Analysis
Fig. 2a depicts the normalized power consumption of CLOCK-

DWF compared to power consumption of a DRAM-only memory.

In all workloads, the static power consumption is reduced by 80%
which shows the effectiveness of hybrid memories to reduce the
static power consumption. Although CLOCK-DWF can decrease
the power consumption in many workloads, there are workloads
in which CLOCK-DWF fails to improve power consumption and
has worse power efficiency compared to DRAM-only memory. The
streamcluster benchmark is read-dominant and CLOCK-DWF moves
the read-only data pages to NVM. Therefore, DRAM area will be
almost idle and NVM will respond most of the requests. This will
cause the dynamic power consumption to be higher than DRAM-only
main memory. The two other benchmarks that have higher power
consumption compared to DRAM are canneal and fluidanimate.
Although these two workloads are read-intensive, the behaviour of the
application causes CLOCK-DWF to migrate a data page to NVM and
after a short time, it brings the migrated data pages back to DRAM.
It is worthy to note that the blackscholes benchmark is a read-only
benchmark and the reason its dynamic power consumption is similar
to DRAM-only memory is that when DRAM is empty, the data page
will be moved to DRAM regardless of the type of the request. In
many of the workloads examined in this paper, the contribution of
the migrations in power consumption is more than 40%. This is due
to this fact that when DRAM memory is full, each write access for
data pages in NVM will trigger a migration from NVM to DRAM
and also, a migration from DRAM to NVM.

B. Performance Analysis
In terms of performance, the source of latencies that can be

observed by applications are the delay of responding to the request,
the delay of migrations, and the delay of page faults. Similar to the
power analysis, the performance analysis can show how much we
have to pay in terms of latency in order to use a hybrid memory.
Fig. 2b shows the contribution of each source of delay on the
AMAT. AMAT is normalized based on AMAT of a DRAM-only
main memory. The calculated AMAT for requests is very close
to the results reported by in the CLOCK-DWF study. Migrations,
however, have not been considered in the CLOCK-DWF study. Based
on the proposed model, the observed delay caused by migrations is
considerable and contributes to more than 60% of the total AMAT.
Therefore, the performance, similar to power, is greatly degraded
because of the non-beneficial migrations. If the hybrid memory
algorithm identifies and prevents these migrations, it will reduce
the migration cost in terms of performance, power, and endurance.
The beneficial migrations, however, should be allowed to exploit the
benefits of hybrid memories.

C. Endurance Analysis
As mentioned earlier, CLOCK-DWF does not issue any write

requests to the NVM and all writes will be responded in DRAM.
Therefore, the only sources of writes in NVM are migration from
DRAM to NVM and moving data pages from disk to NVM in case
of a page fault caused by a read request. Although the data pages in
NVM are read-dominant, each write request for data pages in NVM
will result in a high number of physical writes, since the granularity of
moving a data page is typically three orders of magnitude larger than
the CPU requests. Fig. 2c shows the contribution of various sources
of writes in NVM. The number of writes is normalized compared
to an NVM-only main memory to see how much CLOCK-DWF can
reduce the total number of writes. In most of the workloads, writes
issued for migrations contribute more than 50% of the total writes in
NVM. This excessive use of migrations makes the overall number of
the writes to be even more than an NVM-only main memory. Hence,
the lifetime of NVM will be heavily penalized by using CLOCK-
DWF.

IV. PROPOSED DATA MIGRATION SCHEME
Non-beneficial migrations are the biggest flaw in CLOCK-DWF

and other previous work. Therefore, in the proposed scheme, we
try to identify and prevent this type of migrations. In addition, the
proposed scheme aims to maintain almost the same level of hit ratio

 0

 0.5

 1

 1.5

 2

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

raytrace

stream
cluster

vips
x264

G
-M

ean

A
-M

ean

3.05 6.54
N

o
rm

a
li

z
e

d
 P

o
w

e
r

C
o

n
s

u
m

p
ti

o
n

Static Dynamic Migration

(a)

 0

 1

 2

 3

 4

 5

 6

 7

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

raytrace

stream
cluster

vips
x264

G
-M

ean

A
-M

ean

10.86 12.48 29.64 12.56 12.43

N
o

rm
a

li
z
e

d
 A

M
A

T

Read/Write Requests Migrations

(b)

 0

 0.5

 1

 1.5

 2

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

raytrace

stream
cluster

vips
x264

G
-M

ean

A
-M

ean

3.74 2.32

N
o

rm
a

li
z
e

d
 N

u
m

b
e

r
o

f
W

ri
te

s

Page Fault Migration

(c)

Fig. 2: a) CLOCK-DWF Power Breakdown Normalized to DRAM Power Consumption b) Normalized AMAT of CLOCK-DWF
Compared to DRAM-Only Memory c) Number of Writes in CLOCK-DWF Normalized to NVM-Only Memory

as conventional algorithms in order to have comparable performance
compared to DRAM-only main memory with LRU algorithm.

The proposed scheme consists of two LRU queues, one queue
for DRAM and another queue for NVM. In order to have a high
hit ratio, the algorithms employed in both queues is LRU without
any modification. The proposed scheme manages the migrations be-
tween two memories and moves pages from/to disk. Therefore, both
memories work with LRU and the proposed scheme decides when
a data page should be migrated to another memory. Furthermore,
upon moving a data page to a memory, it will be treated based on
the algorithm of the memory, e.g, moving to the head of the LRU
queue and evicting the last page in the queue. This is one of the
main differences between this work and the previous studies. In the
previous studies, the algorithms for managing pages in memories
need to be changed which will result in lower hit ratio.

In order to find the data pages that will improve power consump-
tion and performance upon migration (with respect to the migration
cost), the proposed scheme stores some additional information about
data pages such as read and write counters in the NVM LRU queue.
Note that this additional information does not interfere with LRU and
it does not need to know about this housekeeping information. For
each data page in the NVM queue, two counters will be stored that
count the number of read and write accesses to the corresponding
data page from the time that data page enters the queue.

Fig. 3 shows the architecture of the proposed data migration
scheme consisting of two LRU queues. Dashed lines depict actions
performed by the proposed technique and solid line are for traditional
LRU management algorithm. Dark data pages are more frequently
accessed and are considered as hot data pages. Contrary to CLOCK-
DWF that places page faults issued by read requests on NVM, the
proposed scheme moves all pages from disk to DRAM area. This is
motivated by the fact that moving to either NVM or DRAM will result
in a page write in NVM since the DRAM is always full and moving
a data page to DRAM will issue an eviction to NVM. Therefore, the
cost of moving to NVM or DRAM is the same in terms of writes
in NVM. The newly accessed data pages have higher probability
of access compared to the older data pages and moving this new
page to DRAM will result in increase in DRAM hit ratio instead
of NVM hit ratio. This will help improving both performance and
power efficiency since DRAM is superior in terms of dynamic power
and delay. The overhead of storing the housekeeping information is
not considerable and is about 0.04% for 4KB data pages. However,
keeping the counters for all pages in NVM has a few drawbacks. First,
it requires an ordering scheme in order to identify data pages that
are cold but will be accessed once in a long time. These data pages
will reside long enough in NVM to have a high counter values and
therefore will be moved to DRAM where they cannot compete with
hot data pages and will return to NVM which makes their migration to
DRAM without any benefits. Second, there is no difference between
pages that are frequently accessed and typically reside near the head
of the NVM LRU queue for the entire time and data pages which go

DRAM

NVM

LRU_next
LRU_prev

ReadCounter
WriteCounter

LRU_next
LRU_prev Additional

Information

Write Percentage
Read Percentage

Fig. 3: Proposed Data Migration Scheme in a Hybrid Memory
Architecture

back and forth in the queue.
In the proposed scheme, another method has been added to handle

both of the above-mentioned issues. The housekeeping information
will be only stored for a few percentage of top positions in the
NVM LRU queue. Once a data page moves to the end of this
selected percentage of LRU, the corresponding counter will be reset
to zero. This will handle both ordering scheme and identifying
burst data accesses. Since NVMs have different costs for reads
and writes in terms of power and performance, we will treat them
differently in the proposed scheme. Write-dominant data pages should
have higher priority over read-dominant data pages for migrating
to DRAM since they cost more in NVM. Therefore, writeperc
and writethreshold parameters will be set to higher values than
readperc and readthreshold.

Algorithm 1 shows the flow of the proposed scheme in case of
arriving a request. Since DRAM contains the most hot data pages,
the proposed scheme searches DRAM first and if it is not found, it
goes to NVM. Finding the data page in DRAM will result in a normal
LRU housekeeping. Otherwise, the extra housekeeping information in
NVM will be updated based on the request type. The read and write
counters will be stored for readperc and writeperc top data pages
in the NVM, respectively. Therefore, in case of a hit, read and write
counters for data pages that are dropped off from the top data pages
will be cleared. Lines 10 through 22 initialize the counters for the
corresponding data page. If the value of the counter for a data page in
NVM exceeds the read threshold or write threshold (depending
on the request type), it will be migrated to DRAM. Inserting a new
data page into memory and eviction policies are unchanged from LRU
and therefore, such details are omitted from the algorithm for the
sake of brevity. The values of read threshold and write threshold
determine how aggressive we plan to prevent the migrations with
low probability of being useful. It is closely related to the cost of
the migration between DRAM and NVM which is related to the
performance and power characteristics of the employed NVM.

V. EXPERIMENTAL RESULTS
In this section, the experimental setup to extract the traces from

workloads and the experimental results for both the proposed method

Algorithm 1: Data Migration in a Hybrid Memory
1 Search for request address in DRAM LRU ;
2 if request address is found in DRAM then
3 Update DRAM LRU ;
4 else
5 Search for request address in NVM LRU ;
6 if request address is found in NVM then
7 Update NVM LRU ;
8 Reset read counter for page in position readperc;
9 Reset write counter for page in position writeperc;

10 if request is read then
11 if request is within readperc then
12 page read counter = page read counter + 1;
13 else
14 page read counter = 1;
15 end
16 else
17 if request is within writeperc then
18 pagewrite counter = pagewrite counter + 1;
19 else
20 pagewrite counter = 1;
21 end
22 end
23 if (request is read and page read counter > read threshold)

or (request is write and
pagewrite counter > write threshold then

24 Migrate page to DRAM;
25 end
26 else
27 Issue page fault from Disk to DRAM;
28 Migrate from DRAM to NVM if necessary;
29 end
30 end

TABLE II: COTSon Configuration

CPU Quad-core with MOESI Protocol
L1 Data Cache 32KB WB 4-way set associative with 64B line size

L1 Instruction Cache 32KB WB 4-way set associative with 64B line size
Last-Level Cache 2MB WB 16-way set associative with 64B line size

Main Memory 2x 2GB DDR2
Secondary Storage HDD with 5 milliseconds response time

and previous studies will be presented.

A. Experimental Setup
The proposed scheme and previous studies are evaluated based on

the proposed performance and power models. For further accuracy
of the evaluation, we used COTSon [13] which is a full system
simulator to obtain memory traces. The memory traces are extracted
from running the actual benchmark programs in a Linux virtual
machine inside COTSon and only memory accesses from ROI of
the benchmark is considered. PARSEC-3.0 [12] has been selected as
the benchmarking suite. The input of all benchmarks was set to the
largest dataset available in order to minimize the effect of starting
from cold memory1.

COTSon simulator used a quad-core CPU with two levels of cache
and 4GB main memory running an Ubuntu operating system. Using
a quad-core CPU will ensure that there is always enough requests
issued to the memory to simulate a production server. The detailed
configuration of the simulated hardware is reported in Table II. In
order to fully understand the effect of different parameters of the
workloads on the output of the hybrid memories, the main features
of the workloads are presented in Table III and will be discussed in
the next subsection. In the experiments, the total memory size is set
to 75% of the total pages and the DRAM size is set to 10% of the
total memory size, similar to previous studies [8]. The performance
and power characteristics of DRAM and NVM, reported in Table IV,
are obtained from the same source as CLOCK-DWF in order to have
a fair comparison.

1swaptions workloads are not included in the results due to compilation
issues in our platform.

TABLE III: Workload Characterization

Workload Working Set Size (KB) # of Read Requests # of Write Requests
Blackscholes 5,188 26,242 (100%) 0 (0%)

Bodytrack 25,304 658,606 (62%) 403,835 (38%)
Canneal 164,768 24,432,900 (98%) 653,623 (2%)
Dedup 512,460 17,187,130 (71%) 6,998,314 (29%)

Facesim 210,368 11,730,278 (66%) 6,137,519 (34%)
Ferret 68,904 54,538,546 (89%) 7,033,936 (11%)

Fluidanimate 266,120 9,951,202 (69%) 4,492,775 (31%)
Freqmine 156,108 8,427,181 (69%) 3,947,122 (31%)
Raytrace 57,116 1,807,142 (83%) 370,573 (17%)

Streamcluster 15,452 168,666,464 (99.8%) 448,612 (0.2%)
Vips 115,380 5,802,657 (59%) 4,117,660 (41%)
X264 80,232 14,669,353 (74%) 5,220,400 (26%)

TABLE IV: Memory Characteristics [8]

Memory Latency r/w(ηs) Power r/w (ηj) Static Power (j
GB.second)

DRAM 50/50 3.2/3.2 1
NVM (PCM) 100/350 6.4/32 0.1

B. Experimental Results
Fig. 4a depicts the normalized power consumption of CLOCK-

DWF and the proposed scheme compared to a DRAM-only main
memory. For each workload, the left and right bars represent CLOCK-
DWF and the proposed scheme, respectively. In most of the work-
loads, the proposed scheme has better power efficiency comapared
to CLOCK-DWF with a few exceptions which will be addressed
later in this section. As shown in Fig. 4a, the power consumption
of the proposed scheme is up to 48% (14% on average2) less than
CLOCK-DWF. In addition, the proposed scheme can reduce the total
power consumption of the main memory up to 79% (43% on average)
compared to using a DRAM-only main memory. The static power
consumption is the same for both methods since they are evaluated
using the same DRAM and NVM size. The main benefit of the
proposed scheme is that the power consumption for migrations is
decreased significantly compared to CLOCK-DWF. The migration
cost is decreased up to 80% by using the proposed scheme.

Among the benchmark programs, canneal, fluidanimate, and
streamcluster have unusual characteristics such as small footprint or
lack of read-dominant data pages which will increase the dynamic
and migration power and makes them not suitable for using hybrid
memories. Contrary to the other workloads, in raytrace workload, the
migration cost of the proposed scheme is higher than CLOCK-DWF.
Our analysis shows that the optimal values for readthreshold and
writethreshold of this workload differs from the other workloads
which caused many non-beneficial migrations between two memories.
It is worthy to note that using adaptive threshold prediction can
further improve the efficiency of the proposed scheme. This is part
of our ongoing research.

One of the main differences between CLOCK-DWF and the
proposed scheme is how they treat write requests attempting to access
data pages in NVM. CLOCK-DWF moves data pages to DRAM
while the proposed scheme tries to respond the request from NVM.
Fig. 4b shows the normalized number of writes arrived to NVM
compared to a NVM-only main memory. Without considering the
migrations, CLOCK-DWF will reduce the number of writes dis-
patched to NVM. Considering the migrations, CLOCK-DWF issues
more writes to NVM compared to a NVM-only main memory up to
3.7x, which significantly affects the lifetime of NVM. The proposed
scheme, on the other hand, limits the number of migrations between
memories and therefore issues less writes to NVM. The mentioned
tradeoff between dispatching requests to NVM and migrating data
pages to DRAM affects the contribution of different sources of
writes in NVM. The proposed scheme favours issuing writes to NVM
instead of migrating the whole data page to DRAM while CLOCK-
DWF does the opposite. This change in policy results in significant
decrease (up to 93%) in the number of writes in NVM compared

2Average numbers reported throughout the paper are geometric means.

 0

 0.5

 1

 1.5

 2
3.05 6.54

N
o

rm
a

li
z
e

d
 P

o
w

e
r

C
o

n
s

u
m

p
ti

o
n

Static
Dynamic

Migration

A
-M

ean

G
-M

ean

x264
vips

stream
cluster

raytrace

freqm
ine

fluidanim
ate

ferret

facesim

dedup

canneal

bodytrack

blackscholes

(a)

 0

 0.5

 1

 1.5

 2
3.74 2,32

N
o

rm
a

li
z
e

d
 N

u
m

b
e

r
o

f
W

ri
te

s

Migration
Page Fault
Read/Write

Requests

A
-M

ean

G
-M

ean

x264
vips

stream
cluster

raytrace

freqm
ine

fluidanim
ate

ferret

facesim

dedup

canneal

bodytrack

blackscholes

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

raytrace

stream
cluster

vips
x264

G
-M

ean

A
-M

ean

1.02

N
o

rm
a

li
z
e

d
 A

M
A

T

Read/Write Requests Migrations

(c)

Fig. 4: a) Power Breakdown of CLOCK-DWF (Left Bar) and the Proposed Scheme (Right Bar) Normalized to DRAM Power
Consumption, b) Number of Writes in CLOCK-DWF (Left Bar) and the Proposed Scheme (Right Bar) Normalized to NVM-
Only Memory, and c) Normalized AMAT of the Proposed Scheme Compared to CLOCK-DWF

to CLOCK-DWF. In addition, the proposed scheme can reduce the
number of writes in NVM up to 75% (49% on average) compared
to a NVM-only main memory which will prolong its lifetime up to
4x. In streamcluster and vips benchmark programs, CLOCK-DWF
performs slightly better since burst accesses to data pages are near
the threshold of being beneficial migration and the proposed scheme
may take a wrong decision on such cases.

From performance perspective, as we concluded in Section III,
the migrations lead to high delay on the average request response
time in CLOCK-DWF. Fig. 4c depicts the normalized AMAT of the
proposed scheme compared to CLOCK-DWF. The proposed scheme
successfully limited the number of migrations and the contribution of
the migration is less than 50% in most of the workloads. Limiting the
migrations improves the AMAT of the proposed scheme significantly
compared to CLOCK-DWF up to 70% (48% on average). Preventing
non-beneficial migrations is not the only reason that the proposed
scheme has superior performance compared to CLOCK-DWF. The
policy for selecting the targets for migrations is another reason that
the proposed scheme has higher performance than CLOCK-DWF
since placing the hot data pages in DRAM will improve AMAT.
In raytrace and vips benchmarks, CLOCK-DWF has better AMAT
since the proposed scheme issues high number of migrations.

VI. CONCLUSION
NVMs are emerging memory technologies that unlike DRAM, do

not have high leakage power and do not depend on the power supply
to store data. NVMs, however, have their own limitations which
prevent them from entirely replacing DRAM. Hybrid memories try to
reduce the power consumption of the main memory while maintaining
high performance. Previous studies lack considering all aspects of
the hybrid memories and the inaccuracy in their models results in
inefficient hybrid memories. In this paper, we first presented both
performance and power models for the hybrid memories. Using the
proposed models, we identified the shortcomings of previous studies
and proposed a novel data migration scheme for hybrid memory.
The proposed scheme consists of two LRU queues with efficient
algorithms to manage data migration. The experimental results show
that the proposed scheme can reduce the power consumption up to
79% compared to DRAM-only memory and up to 48% compared to
previous studies.

REFERENCES

[1] N. Muralimanohar and N. Chatterjee, “International technology
roadmap for semiconductors (ITRS),” 2013. [Online]. Available:
http://www.itrs.net/Links/2013ITRS/Home2013.htm

[2] O. Mutlu, “Main memory scaling: Challenges and solution directions,” in
More than Moore Technologies for Next Generation Computer Design,
2015, pp. 127–153.

[3] R. Salkhordeh, H. Asadi, and S. Ebrahimi, “Operating system level
data tiering using online workload characterization,” The Journal of
Supercomputing, vol. 71, no. 4, pp. 1534–1562, 2015.

[4] S. Yazdanshenas, M. Pirbasti, M. Fazeli, and A. Patooghy, “Coding last
level STT-RAM cache for high endurance and low power,” Computer
Architecture Letters, vol. 13, no. 2, pp. 73–76, July 2014.

[5] M. Tarihi, H. Asadi, A. Haghdoost, M. Arjomand, and H. Sarbazi-
Azad, “A hybrid non-volatile cache design for solid-state drives using
comprehensive I/O characterization,” IEEE Transactions on Computers,
vol. In Press, pp. 1–1, 2015.

[6] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Eval-
uating STT-RAM as an energy-efficient main memory alternative,” in
Performance Analysis of Systems and Software (ISPASS), 2014, pp. 256–
267.

[7] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in International Symposium on
Computer Architecture (ISCA), 2009, pp. 2–13.

[8] S. Lee, H. Bahn, and S. Noh, “CLOCK-DWF: A write-history-aware
page replacement algorithm for hybrid PCM and DRAM memory
architectures,” IEEE Transactions on Computers (TC), vol. 63, no. 9,
pp. 2187–2200, 2013.

[9] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: a hybrid PRAM
and DRAM main memory system,” in 46th Annual Design Automation
Conference (DAC), 2009, pp. 664–469.

[10] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in International Symposium on Computer Architecture (ISCA), 2009, pp.
24–33.

[11] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel, “Energy-
efficient architecture for advanced video memory,” in International
Conference on Computer-Aided Design (ICCAD), 2014, pp. 132–139.

[12] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[13] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega,
“COTSon: infrastructure for full system simulation,” SIGOPS Operating
Systems Review, vol. 43, no. 1, pp. 52–61, 2009.

[14] M. Gamell, I. Rodero, M. Parashar, and S. Poole, “Exploring energy and
performance behaviors of data-intensive scientific workflows on systems
with deep memory hierarchies,” in 20th International Conference on
High Performance Computing (HiPC), Dec 2013, pp. 226–235.

[15] H. Khouzani, C. Yang, and J. Hu, “Improving performance and life-
time of DRAM-PCM hybrid main memory through a proactive page
allocation strategy,” in 20th Asia and South Pacific Design Automation
Conference (ASP-DAC), Jan 2015, pp. 508–513.

[16] R. Rodrı́guez-Rodrı́guez, F. Castro, D. Chaver, L. Pinuel, and F. Tirado,
“Reducing writes in phase-change memory environments by using
efficient cache replacement policies,” in Design, Automation and Test
in Europe (DATE), 2013, pp. 93–96.

[17] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in hy-
brid memory systems,” in International Conference on Supercomputing
(ICS), 2011, pp. 85–95.

[18] Z. Fan, D. Du, and D. Voigt, “H-ARC: A non-volatile memory based
cache policy for solid state drives,” in Mass Storage Systems and
Technologies (MSST), June 2014, pp. 1–11.

[19] S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An effective improve-
ment of the CLOCK replacement,” in Annual Conference on USENIX
Annual Technical Conference (ATEC), 2005, pp. 35–35.

